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ABSTRACT
Mura defect appear as low contrast, non-uniform

brightness regions in the Flat Panel Display(FPD). Au-
tomated Mura inspection method is needed in FPD pro-
duction. There are many types of algorithms in Mura de-
tection, such as algorithm based on singular value decom-
position and surface fitting. Robustness and efficiency is
important in the online FPD inspection systems. This pa-
per proposes an efficient Mura detect algorithm for the
automatic inspection of FPD. The non-uniform bright-
ness region can be detected by the difference of one fitted
Surface and the original image at every pixel. Surface
fitting at every pixel is computing cost. This paper pro-
poses a recursive surface fitting method to improve in-
spection efficiency. Gauss filter is also used in order to
segment the non-uniform region. Performance and effi-
ciency of the proposed algorithm has been evaluated on
some TFT(Thin FilmTransistor)-LCD panel samples. It
is showed that the algorithm is very effective.
KEY WORDS
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1 Introduction
Quality control is becoming a critical task in the FPD

manufacturing process. Surface defects on TFT panel
will cause visual failures. Cost and efficient produc-
tion of FPD demand automatic inspection systems. At
present, human visual inspection remains the standard
practice for evaluating display luminance and color uni-
formity through all stages of display development and
production. However, human inspection needs higher la-
bor power and usually causes inefficient production and
inconsistent inspection: individuals observe and interpret
things differently and a single person may report differ-
ent results over time. Moreover it is difficult for human
to inspect large size FPD.

Automated inspection methods use imaging systems
combined with scientific digital cameras and sophisti-
cated algorithms. High speed and high resolution digi-
tal camera makes automatic inspection possible. Auto-
mated defect detection algorithms have also improved to
the point that it can replace human visual inspection.

In general, Mura defect appear as low contrast, non-
uniform brightness regions. They are larger than a single
pixel when the screen is driven to a constant gray level[1].
Depending on the shapes and sizes, Mura defects may
be classified into spot-Mura, line-Mura, and region-Mura

defect.This paper focus on the region-Mura defects, see
Figure1.

Figure 1:Region-Mura in the FPD

Several algorithms have been developed for detec-
tion of region-Mura defects[1, 2, 3, 4, 5, 6, 7]. Since
the boundary between the regional Mura and the back-
ground is indistinct, multiple resolution analysis[2] is
used to delete noise and segment the defect region for
low-contrast image. For defect detection of periodical,
repetitive textured patterns image, Lu and Tsai[3] devel-
oped an defect inspection algorithm based on singular
value decomposition and reconstruction process. Lee and
Yoo[5] use surface fitting and regression to remove the
non-uniform background as the first phase to detect can-
didate region-Mura defects, in the second phase, based
on visual perception model, they quantify the candidate
Mura defects to identify real muras.

In FPD inspection process, needs of small defects de-
tection on large size FPD demands high speed defect
detection algorithms. This paper presents an efficient
method for the surface fitting scheme, making it possi-
ble for real time FPD automatic inspection systems.

2 Mura Detection based on Surface Fitting
2.1 Basic Defect Detect Algorithm

Lee, Yoo and Choi[5, 6] proposed a surface-fitting
based region-Mura detection algorithm. For the sake of
performance and efficiency improvement, after some ex-
periments, here we proposed a modified version algo-
rithm. LetI(r, c), 1 ≤ r ≤ R, 1 ≤ c ≤ C is the observed
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graylevel image of FPD use high resolution digital cam-
era. Then the algorithm works as follows:

I) Input: I(r, c), 1 ≤ r ≤ R, 1 ≤ c ≤ C, window size
W , polynomial orderd, parameter of Gaussian filter
σ, fixed thresholdT ;

II) Compute the difference of each pixel from the re-
gion surround it: for each pixelp = (r′, c′) in the
imageI except some marginal pixels;

i) Get square window image centered at p, the
square window size isW ;

ii) Fit a polynomial-surface modelf (d)(r, c) in
the square window image use the least-squares
method(LSM),

f (d)(r, c) =
∑

i≥0,j≥0,i+j≤d

αi,jr
icj (1)

iii) Compute the absolute value of difference of
dI(r′, c′) = |I(r′, c′)− f (d)(r′, c′)|

III) Spread the difference of pixel to the region:D =
dI ∗ g(r, c;σ), where∗ means linear filtering and
g(r, c;σ) is Gaussian filter; thenD is the region-
Mura measures;

IV) Construct a binary image use a single fixed threshold
T acquired from experiments.

As described in§2.5, experiments showed thatd = 3,
W = 101 andσ = 3.0 is good for the most images.

There are some key problems in this algorithm:
polynomial-surface modelf (d)(r, c) fit, Gaussian filter-
ing and single fixed thresholdT acquired from experi-
ments. They will be described in the following subsec-
tions.

2.2 Two Types Surface Fitting Algorithms
To fit the polynomial-surface modelf (d)(x, y) use

LSM, the basic algorithm is direct numerical method as
described in[8]. SupposeM = N = 800 andW = 101,
there will be700 × 700 = 490, 000 times such fits and
each fit use101 ∗ 101 = 10, 201 pixels to compute the
model. It is terrible.

The algorithm can be improved by convolution. For
the sake of simplicity, here we give a simple example:
W = 3 andd = 1, that is try to fitf(r, c) = k1 + k2r +
k3c use9 pixels. Use local coordinate system to describe
the pixels in the window,




(−1,−1) (−1, 0) (−1, 1)
(0,−1) (0, 0) (0, 1)
(1,−1) (1, 0) (1, 1)


 (2)

corresponding grayvalue aref1, f2, ..., f9. Then we have,




f1

f2

...
f9


 =




1 r1 c1

1 r2 c2

...
1 r9 c9







k1

k2

k3


 (3)

Use Matrix notion, let

f =




f1

f2

...
f9


 ,A =




1 r1 c1

1 r2 c2

...
1 r9 c9


 ,k =




k1

k2

k3


 (4)

then
f = Ak (5)

Obviously, the least-squares solution ofk is

k = (AT A)−1AT f = Bf (6)

where,A9×3 is known,9 is the number of pixels and3
is the number of polynomial terms. ThenB3×9 is also
known and can be pre-computed and for each window
we can computek1, k2, k3 usingk = Bf .

Let

B =




b11 b12 b13 . . . b17 b18 b19

b21 b22 b23 . . . b27 b28 b29

b31 b32 b33 . . . b37 b38 b39


(7)

b1 = [b11, b12, b13, b14, b15, b16, b17, b18, b19] (8)

b2 = [b21, b22, b23, b24, b25, b26, b27, b28, b29] (9)

b3 = [b31, b32, b33, b34, b35, b36, b37, b38, b39] (10)

According to (6),we can get

k1 = b11f1 + b12f2 + ... + b19f9 = b1 ∗ f (11)

k2 = b21f1 + b22f2 + ... + b29f9 = b2 ∗ f (12)

k3 = b31f1 + b32f2 + ... + b39f9 = b3 ∗ f (13)

that is,k1, k2, k3 can be computed from linear convolu-
tion and the convolution templates, corresponding to each
rows ofB3×9, can be pre-computed. This algorithm can
be generalized for anyW and anyd.

So this method transform the polynomial-surface fit-
ting problem to template convolution. Noticed that only
k1 is necessary in computingdI if local coordinate sys-
tem, like (2), is used. Obviously, the result of this method
is equivalent to the direct numerical method but the speed
is faster than the direct. But this method also very slow
for largeW which is needed in region-Mura detection,
the computing cost of the method is too high to use.

2.3 Recursive Polynomial-Surface Fitting
In order to get much faster algorithm to fit a

polynomial-surface, Haralick, Zuniga and Qiang Ji[9, 10,
11] have proposed many algorithms and the best one is
the recursive algorithm.

Def. 1 Symmetric Index Set:R is a symmetric index
set, ifn ∈ R implies−n ∈ R, let the number of elements
in R beN .

Use Pn(r) expressn-order polynomial with the co-
efficient of the highest ordered item is 1, here call itn
ordered polynomial for short. General speaking,

Pn(r) = rn + an−1r
n−1 + ... + a1r + a0 (14)
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Def. 2 Discrete Orthogonal Polynomial on Symmet-
ric Index Set:{P0(r) = 1, P1(r), ..., PN (r)} is a group
of polynomials, which haveN + 1 elements, with dif-
ferent degrees, whereN is the number of elements of the
symmetric index set. It is called discrete orthogonal poly-
nomials on symmetric index setR if

∑

r∈R

PmPn = 0, 0 ≤ m < n ≤ N (15)

Haralick[9]proposed a recursive formula of discrete
orthogonal polynomials on symmetric index set,

P0(r) = 1
Pi+1(r) = rPi(r)− βiPi−1(r)

where,

βi =
∑

r∈R Pi(r)Pi−1(r)∑
r∈R P 2

i−1(r)
(16)

So we can get arbitrary degree of discrete orthogonal
polynomial on R using this recursive formulas. In our
problem,n = 3 is enough and

P0(r) = 1 (17)

P1(r) = r (18)

P2(r) = r2 − a (19)

P3(r) = r3 − br (20)

where,a = µ2
µ0

, b = µ4
µ2 , µk =

∑
r∈R sk.WhenR =

{−2,−1, 0, 1, 2}, µ0 = 5, µ2 = 10, µ3 = 17, a = 2, b =
3.4.

The two dimensional discrete orthogonal poly-
nomial can be constructed from the tensor prod-
uct of the two sets of one dimensional discrete
polynomials. Let {P0(r), P1(r), ..., PN (r)} and
{Q0(c), Q1(c), ..., QM (c)} be discrete orthogonal poly-
nomials on the symmetric index setR andC respectively.
Then {P0(r)Q0(c), ..., Pm(r)Qn(c), ..., PN (r)QM (c)}
is the discrete orthogonal polynomials on the 2D-
symmetric index setR× C.

WhenR = C = {−2,−1, 0, 1, 2}, the tensor product
discrete orthogonal polynomial onR×C is {1, r, c, r2−
a, rc, c2− a, r3− br, (r2− a)c, r(c2− a), c3− br, (r3−
bc)c, (r2−a)(c2−a), r(c3−bc), (r3−br)(c2−a), (r2−
2)(c3 − bc), (r3 − br)(c3 − bc)}. Because we only care
polynomials with order not more thand = 3, so we
should make a selection from above set. Tensor product
discrete orthogonal polynomials with degree not exceed
d = 3 onR×C are{1, r, c, r2−a, rc, c2−a, r3−br, (r2−
a)c, r(c2 − a), c3 − bc}, we usegi(r, c), i = 1, ..., 10 to
express them.

Obviously, any bivariate cubic polynomial can be ex-
pressed by linear combination of those discrete orthogo-
nal polynomials,

f(r, c)
= k1 + k2r + k3c + k4r

2 + k5rc + k6c
2

+k7r
3 + k8r

2c + k9rc
2 + k10c

3 (21)

= K1 + K2r + K3c + K4(r2 − a) + K5rc

+K6(c2 − a) + K7(r3 − b) + K8(r2 − a)c

+K9r(c2 − a) + K10(c3 − bc) (22)

=
10∑

i=1

Kigi(r, c) (23)

K1, ..., K10 andk1, ..., k10 have following relations:

k1 = K1 − aK4 − aK6 (24)

k2 = K2 − bK7 − aK9 (25)

k3 = K3 − bk10 − aK8 (26)

ki = Ki, i = 4, ..., 10 (27)

Let

G(r, c) =
10∑

i=1

Kigi(r, c) (28)

so fit the polynomial-surface modelf (d)(x, y) use LSM
is equivalent to the following problem: minimizee about
Ki, i = 1, ..., 10,where

e =
∑

(r,c)∈R×C

[I(r, c)−G(r, c)]2 (29)

Becausegi(r, c) andgj(r, c), i 6= j is orthogonal,

Ki =

∑
(r,c)∈R×C gi(r, c)I(r, c)∑

(r,c)∈R×C g2
i (r, c)

(30)

(30) tell us that each coefficientKi can be computed us-
ing I(r, c) by template convolution independently and the
corresponding template isWi,

Wi =
gi(r, c)∑

(r,c)∈R×C g2
i (r, c)

(31)

ComputeKi usingWi is possible but not the best. Be-
causegi(r, c) is separable,

g1(r, c) = 1 = 1× 1
g2(r, c) = r = r × 1
g3(r, c) = c = 1× c

g4(r, c) = r2 − a = [r2 − a]× 1
g5(r, c) = rc = r × c

g6(r, c) = c2 − a = 1× [c2 − a]
g7(r, c) = r3 − br = [r3 − br]× 1
g8(r, c) = (r2 − a)c = [r2 − a]× c

g9(r, c) = r(c2 − a) = r × [c2 − a]
g10(r, c) = c3 − bc = 1× [c3 − bc]

so 2D template convolution can be decomposed into
some simple 1D template convolution. For exam-
ple, template convolution usingg1(r, c) can be decom-
posed into two 1D template convolution: first tem-
plate convolution using row template[1, 1, 1, ..., 1, 1, 1]
and then using column template[1, 1, 1, ..., 1, 1, 1], here
template[1, 1, 1, ..., 1, 1, 1] is generated by polynomial1.

Now we only focus on some simple 1D template con-
volution. Suppose the input isI1, I2, ..., IN , we are only
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interested in following 4 types template convolution:

xn =
K∑

r=−K

In+r (32)

yn =
K∑

r=−K

rIn+r (33)

zn =
K∑

r=−K

(r2 − a)In+r (34)

vn =
K∑

r=−K

(r3 − br)In+r (35)

All filtering above use polynomial as filter,

filter1(s) = 1
filter2(s) = s

filter3(s) = s2 − a

filter4(s) = s3 − bs

Now we will construct the recursive formulas of (32),
(33), (34), (35).

xn+1 =
K∑

r=−K

In+1+r = xn + In+K+1 − In−K (36)

yn+1 = yn − xn+1 + (K + 1)In+K+1 + KIn−K (37)

zn+1 = zn − 2yn+1 − xn+1

+[(K + 1)2 − a)]In+K+1

−[K2 − a]In−K (38)

vn+1 = vn − 3(zn − yn)− (3a− b + 1)xn

+[K3 − bK]In+K+1

+[(K + 1)3 − b(K + 1)]In−K (39)

The formula we proposed here, (39), is different from
corresponding formula in Qiang Ji and Haralick’s[11].
After carefully examination and numerical experiments,
we see that there are some misprints in their paper.

Using (36), (37), (38), (39), we can computeki, i =
1, ..., 10 of recursively:

I) Input: I(r, c), 1 ≤ r ≤ R, 1 ≤ c ≤ C, K = (W −
1)/2;

II) Open float buffer forx, y, z, v, each have the same
size of image;

III) Filtering the image row by row:

i) for theKth pixel in each row, using (32), (33),
(34), (35)to compute value of corresponding
position inx, y, z, v respectively;

ii) for other pixels in each row, using (36), (37),
(38), (39) to compute value of corresponding
position inx, y, z, v respectively;

IV) Filtering the image column by column:

i) Filter x using the same method as that in III)
to getK1,K3,K6,K10;

ii) Filter y using the same method as that in III) to
getK2,K5,K6,K9;

iii) Filter z using the same method as that in III) to
getK4,K8;

iv) Filter v using the same method as that in III) to
getK7;

v) Computeki from Ki using (24), (25), (26) and
(27) respectively.

2.4 Gaussian filtering and Mura Region Label
After difference surface fitting image with original im-

age, we can segment Mura defects from the image. Be-
fore labeling mura area, Gauss filter can be used to re-
move the noise.

Gaussian filter is one of the important filters in the im-
age processing and computer vision and then many re-
searchers have studied their properties and implementa-
tion. This paper have implemented some of them, and the
conclusion is: Deriche’method[12] is a good implemen-
tation for parallel computer, Demnigy’s method[13] is a
good implementation for real-time hardware and Young’s
method[14] is a good implementation for serial computer.
We can choose appropriate method in different system.

The best way to label Mura in the region-Mura mea-
suresD is the method based on human visual perception
like the ones in Lee, Yoo and Choi[5, 6] and Chen[15].
Even then, this paper try to choose a fixed thresholdT ,
based on human visual perception experiments, for all
images.

2.5 Experiment and Parameters Selection
Degree of polynomials,d, is important in surface fit-

ting. To get more accurate approximation, higher degree
is wanted, but Approximation Theory told that polyno-
mial with degree more than 4 or 5 is improper because
of inflexibility. So d = 3, 4, 5 is used in most applica-
tions. In image processing,d = 3 is enough, so this paper
choosed = 3.

W is the most important parameter in this program.
This paper did many experiments, see Figure2, and found
thatW = 101 is the best.

Gaussian smooth is necessary. Figure3 showed that
serious texture exists in image anddI is hard to process.
In Figure3, (c) is the smoothed image of (a), it is clearly
shown that smooth can spread the difference of pixel to
the region and eliminate isolated noise which is created
by texture. Experiments showed thatσ = 3.0 is best.

The last parameter isT . Some volunteers were asked
to observe the images and the results. This paper first use
T = 50.0 to detect Mura, there is noting in detected im-
age so volunteers dissatisfied the result, then this paper
decreaseT slowly and detect Mura again. This process
was repeated again and again until they satisfied the re-
sults.T is different for different volunteers, and the aver-
age isT = 0.35. So this paper chooseT = 0.35 as the
threshold.
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(a) W = 11 (b) W = 41

(c) W = 61 (d) W = 81

(e) W = 101 (f) W = 121

Figure 2:W = 101 is good. dI of the image in Figure
1 with variousW , d = 3. To show thedI clearly, we
multiply dI by 10.

(a) dI of Fig.1 (b) Binarized image ofdI

(c) D = SmootheddI (d) Binarized image ofD

Figure 3: Smooth is necessary. To show thedI clearly,
we multiplydI by 10.

There are some examples of region-Mura detection,
with d = 3, W = 101, σ = 3.0 andT = 0.35, in Figure
4.

Figure 4:Example of Region-Mura Detection.

Region-Mura may appears in two types of images:
with or without periodical, repetitive textured patterns.
Experiments showed that this algorithm can be used to
detect region-Mura in both of them.

Everyone can download the executable file of the pro-
gram from my homepage[16].

2.6 Comparison
For the same parameters, the performance of recur-

sive method is same as that of template convolution based
method, see Figure5.

Table1 show that the speed of recursive based imple-
mentation is much faster than that of template convolu-
tion based.

Table 1:Comparison of elapsed time of proposed region-
Mura detect algorithm

Implementation Average Elapsed time
(Unit:MSEL)

Template based 12200
Recursive based 65

Machine:Intel P4 CPU 3.0GHz;512M Memory
OS:Windows XP sp2;
Program Language of algorithm:Standard C
Compiler: Visual C++ 6.0
Image Size:832× 621

5



(a) Example image

(b) dI based on template based (c) Final result of (b)

(d) dI based on recursive based (e) Final result of (d)

Figure 5: Performance comparison between recursive
based method and convolution based method

3 Conclusions
This paper proposed a modified version fitting based

region-Mura detect algorithm and use recursive polyno-
mial fitting and recursive Gaussian filtering techniques to
implement it. The result is good for many images and the
program is fast enough in online Mura detection system.
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