位置決め専用画像処理装置 FV-alignerII シリーズ

本説明書はソフト ver2.2.0.0の内容について記載しています。

東京エレクトロン デバイス株式会社

ご注意

- (1)本書の内容の一部または全部を転載することは固くお断りします。
- (2)本書の内容については将来予告なしに変更することがあります。
- (3) 本書の内容については万全を期して作成いたしましたが、万一ご不審な点や誤り、記載もれなど お気づきの点がありましたらご連絡ください。
- (4)運用した結果の影響については、(2)(3)項にかかわらず責任を負いかねますのでご了承ください。
- (5) 本製品がお客さまにより不適当に使用されたり、本書の内容に従わずに取り扱われたりしたこと 等に起因して生じた損害等については責任を負いかねますのでご了承ください。

1	. パタン一覧・・・・・・・・・・・・・・・・・・・・・・・1
2	. パタン新規登録・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
	2.1 自動マーク検出パラメータ・・・・・・・・・・・・・・・・・・・・・・6
	2 2 画像作成 · · · · · · · · · · · · · · · · · · ·
	2 3 AScope
	2.4 + 7 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5
ე	
3	
	3.1 サーナハフメータ初期値設定変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	. パタン中心設定・・・・・・19
	4.1 手動中心設定
	4.2 自動中心設定
5	. サーチ手法 Gray ······ 27
	5.1 Gray とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.2 Grav パラメータ設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・28
	5.3 Grav 詳細設定····································
	5.3.1 実行オプションの解説····································
6	. サーチ手法 FPM ···································
	6 1 FPM とは・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6 2 FPM サーチパラメータ設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
	6.2.1 相関エッジフィルタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.2.2 ソーベルフィルタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.3 FPM ツール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.4 FPM 詳細設定 · · · · · · · · · · · · · · · · · · ·
	6.4.1 基本
	6.4.2 領域スコア算出用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.4.4 相関エッジ特徴量抽出用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・52
	6.4.5 ソーベル特徴量抽出用・・・・・ 56
	6.4.6 特徴点計測フィルタ······57 6.4.2 mmm - ビ
7	0.4.7 処理モート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
/	
	7.3 交点サーチパラメータ設定・・・・・・・・・・・・・・・・・・・・・・・62
0	7.3.1 縦(横)直線詳細・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
8	. 矩形エッシー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 69
	8.1 矩形エッジと円近似アライメント
	8.2 パタン登録
	8.3 サーチパラメータ設定・・・・・ 72
	8.3.1 $\forall - f \forall z z f$
	δ. 3. 2 ハダンマスク····································

目 次

9.	マークサーチ交点検出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	75
9	.1 マークサーチ交点検出とは · · · · · · · · · · · · · · · · · · ·	75
9	.2 パタン登録 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
9	.3 サーチパラメータ設定	81
10.	前処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
1	0.1 ガンマ補正 ······	85
1	0.2 ヒストグラム平滑化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
1	0.3 ヒストグラム正規化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
1	0.4 平滑化フィルタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
	10.4.1 ボーダーモード設定について······	· 90
1	0.5 メディアンフィルタ	93
1	0.6 MIN/MAX フィルタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
1	0.7 鮮鋭化	95
1	0.8 ガウシアンフィルタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
1	0.9 色空間変換 ····································	97
1	0.10 チャネル抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	103
1	0.11 色抽出 · · · · · · · · · · · · · · · · · · ·	106
1	0.12 モルフォルジ(3×3) · · · · · · · · · · · · · · · · · · ·	107
11.	パタンマスク・・・・・・1	80
1	1.1 手動マスク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	108
1	1.2 自動1マスク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	110
12.	サーチ実行、統計量計測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
13	パタン削除	1/

1. パタン一覧

パタン一覧						×
0001,CH0,Gray BGT	0002,CH1,Gray	0003;CH3;FPM	0004,CH3,FPM	0005	0006	パタン番号: 1-24 現在ページ: 1/417
0007	0008	009	0010	0811	0012	先頭ページ - 100ページ - 10ページ - 1ページ
0013	0014	0015	0016	0017	0018	+1ページ +10ページ +100ページ 最終ページ
0019		0024	0022	0023	0024	パタンコピー
縮小	拡大 新規/修正	バタンを選択して下さい	•		削除	1700

登録したパタン一覧表示と、新たにパタンを登録します。

	登録したパタンの一覧です。9999 パタンまで登録可能です。
パクシー 暫	枠内をクリックしてパタン登録を開始します。空欄の枠をクリックすると新規登録が
ハラン見	出来ます。既に登録された枠をクリックすると、登録したパタンを変更する事が出来
	ます。また、作成したパタンを右クリックすることでパタンの削除が出来ます。
縮小、拡大	画面表示リスト枠内の1画面に表示される大きさを縮小、拡大出来ます。
先頭ページ	先頭ページを表示します。
-100ページ	100ページ前を表示します。
-10ページ	10 ページ前を表示します。
-1ページ	1ページ前を表示します。
+1ページ	1ページ先を表示します。
+10ページ	10 ページ先を表示します。
+100ページ	100 ページ先を表示します。
最終ページ	最終ページを表示します。
	パタンのコピーを行う事が出来ます。
パタンコピー	Copyにチェックを入れ、コピー元パタンを選択します。その後、空欄をクリックする
	とパタンのコピーを行います。
削除	パタン削除ダイアログからパタンを削除することが出来ます。

削除したいパタン行をクリックします。ボックスにチェックが入り色が変わります。

全てONをクリックすると全パタンにチェックが入ります。

全てOFFをクリックするとチェックが解除されます。

チェックが入った状態で削除ボタンをクリックすると、確認メッセージが表示され"はい"をクリックする とパタンが削除されます。

キャリブレーション設定、品種設定で割当てられているパタンは"使用中"が表示されています。

パタン	ン削除					(ж
	全てON					全てOFF	
		パタン	No.	サーチ手法	パタン名称	使用	^
V	削除		0001	Gray	BGT	使用中	
			0002	Gray		使用中	
			0003	FPM		使用中	
V	削除	+	0004	FPM		使用中	Ξ
V	削除	9	0025	Gray		使用中	
			0026	Gray		使用中	
		•	0027	Gray		使用中	
			0028	Gray		使用中	
		\bigcirc	0031	FPM		使用中	
		-					Ť
						削除	

2. パタン新規登録

空欄のパタン一覧(未登録)を選択して枠内をクリックすると、新規登録の画面が表示されます。 パタン新規登録ボタンをクリックします。

縮小	画像の縮小表示を行います。
拡大	画像の拡大表示を行います。
等倍	Scale100%で画像表示を行います。
フィット	画面に対して最適なScaleサイズで画像表示を行います。
AScope	Aスコープを実行します。
画像保存	カメラから取り込んだ画像の保存を行います。
画像読込	ファイル画像の読込を行います。
連続取込	カメラから画像を連続取り込みします。
	カメラチャンネルの切換を行います。
縮小 拡大 等倍 フィット AScope 画像保存 画像読込 連続取込 CH切換	選択されているチャンネルはカメラマークがピンク色になります。

サーチ手法を「FPM」「Gray」「交点」「矩形エッジ」「マークサーチ交点検出」から選択し、パタンの 登録を行います。

「FPM」「Gray」では、マークの位置を矩形で囲み、登録ボタンをクリックします。 ※サーチ手法で"交点"を使用する場合は、「7.2 交点パタン新規登録」を参照ください。 ※サーチ手法で"矩形エッジ"を使用する場合は、「8.2 パタン登録」を参照ください。 ※サーチ手法で"マークサーチ交点検出"を使用する場合は、「9.2 パタン登録」を参照ください。

パタン番号	パタン番号が表示されます。
パタン名称	パタンに名称を付ける場合に設定します。
サーチ手法	FPM、Gray、交点、矩形エッジ、マークサーチ交点検出から選択します。
設守自日本市	矩形による指定≒矩形を移動させてパタンを囲む方法です。
設定001変更	4直線による指定∶4直線を移動させてパタンを囲む方法です。
白動マニク検山	自動でマーク検出を行います。複数のマークが検出された場合は、対象のマークを
日期マーク検出	トラックボールで指定します。
タッチパッド	パタン登録枠の位置、サイズを調整します。(タッチパネル操作用)
	下部に始点とサイズが表示されます。
ヒフトガラル	画素の照度とその出現度数を表したグラフが表示されます。
	「2.4 ヒストグラム」を参照してください。
サーチ範囲設定	サーチ範囲の調整を行います。
	登録位置 前回の登録位置を初期位置にする場合にチェックを入れます。
オプション	登録位置表示:画面右上に"始点-終点"または"始点-サイズ"のどちらを表示す
オプション	るのかを選択します。
登録	囲われた枠内がパタンとして登録されます。
キャンセル	パタン登録をキャンセルします。

登録されたパタンが画面右上に表示されます。

パタン表示 [019 :]				×
A A A A A A A A A A A A A A A A A A A	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	2回 田 日切換 サーチ実行 CH1>>	9 : CH0 : y	
			元画像表示	~
			Ð	
			パタン新規登録	サーチ手法変更
A STATE AND A STATE AND				•
			手動中心設定	自動中心設定
			サーチパラメータ設定	統計量計測
an the fait			パタン削除	
パタン登録が行われました		オプション	閉し	5

2.1 自動マーク検出パラメータ

パタン登録画面のオプションをクリックします。自動マーク検出のパラメータ画面が開きます。

《タン登録									×
オプション							×	香 号	24
登録位置								3称:	,
□前回の登録	位置を初期位置	にする						名を入力	して下さい
──登録位置表示──								手法:	
◉始点-終点									~
○始点-サイズ									
自動マーク検出ー									
◉ 標準自動検	出		○円自動検	出 <mark>(</mark> 手法:サー	۴)				
○円自動検出	<mark>(手法:2値)</mark>		○十字自動	検出 (手法:サ	ーチ)				
パラメータ			パラメーター						
マーク色	• 黒		マーク色	() 第			劼		
マーク直径	100		マーク直径	100					
膨張回数	5		膨張回数	2					
形状指定	◎ 中実円	○ 中空円	エッジ抽出	閾値 10					
表示画像	◎ 原画像	○前処理 ○2値	スコア閾値	50					
			表示画像	• 原	画像 (前処理			
				011		الصارحات فلو		UI変更:	
			L	UK		イヤノビル		はる指定	~
					a and		自動	ー マーク検出	タッチパッド
							۲2	トグラム	サーチ範囲設定
						オプション		登録	キャンセル

登録位置 パタン登録枠について、前回の登録位置を初期位置にする場合にはチェックを入れます。 登録位置表示 登録位置表示について、"始点-終点"または "始点-サイズ" どちらで表示するか設定します。表示は画面右上に赤字で表示されています。 標準自動検出 自動でマーク検出を行います。複数のマークが検出された場合は、対象のマークをトラックボールで指定します。 保準自動検出 2値を使用した円または中空円に特化した自動検出を行います。標準自動検出では複数回答が表示されますが、本検出では最も真円度の高い結果1つがパタン登録されます。 マーク色 黒色または白色を選択します。 マーク直径 検出するマークの直径を画素数で設定します。 膨張回数 マーク色を膨張させる(モルフォルジ)回数を設定します。 形状指定 中実円または中空円を選択します。 東示画像 マーク検出時に表示する画像を "原画像" "前処理" "2値"から選択します。 サーチ(FPM)を使用した円または中空円に特化した自動検出を行います。標準自動検出では複数回答が表示されますが、本検出では最も真円度の高い結果1つがパタン登録されます。 マークを 黒、白、自動から選択します。 マーク色 黒、白、自動から選択します。	
登録位置表示	登録位置表示について、"始点-終点"または"始点-サイズ"どちらで表示するか設 定します。表示は画面右上に赤字で表示されています。
標準自動検出	自動でマーク検出を行います。複数のマークが検出された場合は、対象のマークを トラックボールで指定します。
円自動検出 (手法:2値)	2値を使用した円または中空円に特化した自動検出を行います。標準自動検出では複数回答が表示されますが、本検出では最も真円度の高い結果1つがパタン登録されます。
マーク色	黒色または白色を選択します。
マーク直径	検出するマークの直径を画素数で設定します。
膨張回数	マーク色を膨張させる(モルフォルジ)回数を設定します。
形状指定	中実円または中空円を選択します。
表示画像	マーク検出時に表示する画像を"原画像""前処理""2値"から選択します。
登録位置 パタン登録枠について、前回のす。 登録位置表示 登録位置表示について、"始点定します。表示は画面右上に満定します。表示は画面右上に満定します。表示は画面右上に満たいます。 標準自動検出 自動でマーク検出を行います。 円自動検出 (手法:2値) マーク色 黒色または白色を選択します。 マーク色 黒色または白色を選択します。 マーク直径 検出するマークの直径を画素 膨張回数 マーク色を膨張させる(モルフ 形状指定 ア目動検出 ケータクをを膨張させる(モルフ 形状指定 マーク検出時に表示する画像 マーク検出時に表示する画像 アー目動検出 サーチ(FPM)を使用した円また 出では複数回答が表示されます。 マーク色 黒、白、自動から選択します。 マーク直径 検出するマークの直径をmm値	サーチ(FPM)を使用した円または中空円に特化した自動検出を行います。標準自動検 出では複数回答が表示されますが、本検出では最も真円度の高い結果1つがパタン登 録されます。
マーク色	黒、白、自動から選択します。
マーク直径	検出するマークの直径を㎜値で設定します。

膨張回数	マーク色を膨張させる(モルフォルジ)回数を設定します。			
エッジ抽出閾値	エッジを抽出する際の閾値を設定します。			
スコア閾値	スコア閾値を設定します。			
表示画像	マーク検出時に表示する画像を"原画像""前処理"から選択します。			
十字自動検出 (手法:サーチ)	サーチ(FPM)を使用した十字に特化した自動検出を行います。 標準自動検出では複数回答が表示されますが、本検出では最もスコアの高い結果1つ がパタン登録されます。			
マーク色	黒、白、自動から選択します。			
十字サイズ、幅	十字のサイズと幅を画素数で設定します。			
膨張回数	マーク色を膨張させる(モルフォルジ)回数を設定します。			
エッジ抽出閾値	エッジを抽出する際の閾値を設定します。			
スコア閾値	スコア閾値を設定します。			
表示画像	マーク検出時に表示する画像を"原画像""前処理"から選択します。			
※十字自動検出の注	意点			
十字マークの検出で	は、縦線と横線の長さ、及び、幅が同じであることを前提に検出を行います。多少の			
エッジを抽出する際の閾値を設定します。 スコア閾値 スコア閾値を設定します。 表示画像 マーク検出時に表示する画像を"原画像""前処理"から選択します。 +字自動検出 (手法:サーチ) サーチ(FPM)を使用した十字に特化した自動検出を行います。 マークを 帯・白、自動から選択します。 マーク色 黒、白、自動から選択します。 +字サイズ、幅 十字のサイズと幅を画素数で設定します。 アンジ抽出閾値 エッジを抽出する際の閾値を設定します。 エッジを抽出する際の閾値を設定します。 エッジを抽出する際の閾値を設定します。 スコア閾値 スコア閾値を設定します。 スコア閾値 スコア閾値を設定します。 メーク検出時に表示する画像を"原画像" "前処理"から選択します。 ※十字自動検出の注意点 +字マークの検出では、縦線と横線の長さ、及び、幅が同じであることを前提に検出を行います。多少の 違いは許容されますが、大きく異なる場合、「検出に失敗する」「端が見切れてしまう」といった問題が発 生します。				

■円自動検出、十字自動検出について

自動マーク検出ボタンで、検出を行います。 検出された円の位置と中心は、赤線で表示され、3 秒後に消えます。

※本機能は、パタン自動登録コマンド(FAMA コマンド No222)、パタン自動登録パラメータ設定コマンド (FAMB コマンド No223、FAMC コマンド No227、FAMD コマンド No228)で外部から実行することが可能です。 コマンド実行された内容は、本機能に反映されます。

2.2 画像作成

パタン登録時に、マスター画像を作成することができます。作成した画像に対してパタン登録を行うこと で、登録時のワークのマーク状態によらない理想状態のパタンを作成することができます。

画像作成が完了したらOKをクリックします。 (2個以上の画像を作成する場合は、適用をクリックして次の画像作成を行います。)

動像作成)
<u>A</u> <u>A</u>	R	_82	-4			9	3 11	背景			
縮小 拡大	等倍	フィット	AScope	CUD	画像読込	撮像	CH切換	◉ 作成	○画像	○ 維続	
Scale 88.5%								形状			
										•	
								中実長方形	中空長方		
								0			
								中空円	中実トンプ	ボーク 中空トンク	ĸ
								.	ሊ	•	
								中実凸	中空凸	中実格P	q
								─平滑1L ● ON	ODEE	設定リセット	-
								背景濃度	128		
								中心	329.0	247.0 2702	
								マーク		一移動	٦J
								濃度	255	突出部	
								高さ	20.0 唐	රේ 20	.0
								幅	40.0 太	č 20	.0
								内側			
								濃度	128	突出部	
								高さ	20.0 高	Sč 10	.0
								幅	20.0 太	č 10	.0
										_	
								適用	ОК	キャンセ	2.16

	作成:作成画像(背景濃度)を背景とします。
背景	画像∶カメラからの取込画像を背景とします。
	継続:2個以上の形状を作成する場合継続となります。
形状	作成するマークの形状を指定します。
	ON∶作成したマークを平滑化します。パタンとして使用する際に平滑化した画像の方
平滑化	がサーチに適している場合が多いため、通常はONに設定してご使用ください。
	OFF∶作成したマークを平滑化しません。
設定リセット	設定値を初期値に戻します。
背景濃度	マーク以外の背景の濃度を指定します。
中心	マークの中心位置を指定します。中心位置は画像上のマウス操作でも変更可能です。
濃度(マーク)	マークの濃度を指定します。
	マークの高さを指定します。長方形の場合は、縦方向の中心からの画素数を指定しま
高さ(マーク)	す。円の場合は、円の半径の画素数を指定します。トンボの場合は、中心からの長さ
	の画素数を指定します。高さは画像上のマウス操作でも変更可能です。
	マークの幅を指定します。長方形の場合は、横方向の中心からの画素数を指定します。
幅(マーク)	トンボの場合は、中心からの幅の画素数を指定します。
	幅は画像上のマウス操作でも変更可能です。
濃度(内側)	内側マークの濃度を指定します。
	内側マークの高さを指定します。長方形の場合は、縦方向の中心からの画素数を指定
	します。円の場合は、円の半径の画素数を指定します。
高さ(内側)	トンボの場合は、中心からの長さの画素数を指定します。
	楕円の場合、楕円の長さ(Y方向)を指定します。
	高さは画像上のマウス操作でも変更可能です。
	内側マークの幅を指定します。長方形の場合は、横方向の中心からの画素数を指定し
幅(内側)	ます。トンボの場合は、中心からの幅の画素数を指定します。
	楕円の場合、楕円の幅(X方向)を指定します。
	幅は画像上のマウス操作でも変更可能です。
突出部	「形状で中実凸、中空凸を選択した場合、空出部の高さ、太さを指定します。
高さ、太さ	

パタン登録					×
- S - S - S - ** 縮小 拡大 - 等倍 フィット AScope	🚽 🗳 画像保存 画像読込	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	中 画像作成	パタン番号	20
<< CH 3	СНО 🖳 🛄 🛃 🛃		CH 1 >>	パタン名称:	
Scele 32.1%		(1093	788)-(389,366)	パタン名を入力して	下さい
				サーチ手法:	
				Gray	~
	- () () ()				
				設定GUI変更:	
				矩形による指定	~
				自動マーク検出	タッチパッド
				ヒストグラム	サーチ範囲設定
			オプション	登録	キャンセル

2.3 AScope

対象画像のX断面,Y断面での濃度レベルを表示します。AScopeをクリックします。

Χ, Υ	現在のカーソルのX、Y座標値を表示します。
UC8	現在のカーソル位置の濃度値を表示します。
画像表示内概要	任意のカール位置の濃度グラフ(0~255階調)で表示します。
X断面濃度分布	カーソルのX断面濃度分布を表示します。
Y断面濃度分布	カーソルのY断面濃度分布を表示します。

2.4 ヒストグラム

画素の照度とその出現度数を表したグラフを表示します。ヒストグラムをクリックします。

パタン登録					×
A A A A A A A A A A A A A A A A A A A	■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	 ♥ III 連続取込 CH切換 	◆ 画像作成	パタン番号	19
Star 12 ft		(1226		バタン名称: パタン名を入力して	下さい
				サーチ手法:	
				Gray	~
-2 All the State					
				設定GUI変更:	
				矩形による指定	~
				自動マーク検出	タッチパッド
				ヒストグラム	サーチ範囲設定
マークが1つ見つかりました			オプション	登録	キャンセル

ヒストグラム計測									×
A A	A 52	-4			9	1			
縮小 拡大	等倍 フィット	AScope	画像仍	存 画像読込	連続取込	CH切换		グレイ	^
<< CH 3			СНО 🚺 🚺 🛂 🕄			CH 1 >>	最大頻度	565342	
Scale :28.4%	6						最大時濃度	90	
							最小頻度	0	
**							最小時濃度	1	
\otimes							現位置頻度		
							現位置濃度		
₩									
							濃度	頻度	
× .							0	4	
							1	0	
×							2	0	
							3	0	
×							4	0	
							5	0	
							6	0	
\otimes							7	0	
							8	0	
×							9	0	
							10	0	
×							11	0	
×							12	0	
×							13	0	
×							14	0	
							15	0	
***							16	0	
		Cranaria na					17	0	
565342							18	0	
							19	0	
424007							20	0	
282671			<u> </u>				21	0	
							22	0	
141336							23	0	~
	\sim							89	" Z
0		64	128	192		255		[7]I	00

最大頻度	頻度値の最大値が表示されます。
最大時濃度	頻度最大値に対応する濃度値が表示されます。
最小頻度	頻度値の最小値が表示されます。
最小時濃度	頻度最小値に対応する濃度値が表示されます。
	現在位置の頻度が表示されます。
現位置頻度	グラフの部分をマウス左ボタンドラッグすると位置(黄色縦線)が設定されます。
	黄色縦線部分でマウス左ボタンドラッグすると「位置」が更新されます。
現位置濃度	現在位置の濃度が表示されます。

3. サーチ手法変更

登録済みパタンのサーチ手法を変更する事が可能です。 サーチ手法変更をクリックします。

パタン番号	パタン番号が表示されます。
パタン名称	パタンに名称を付ける場合に設定します。
現在のサーチ手法	上部に現在のサーチ手法が表示されます。下部でサーチ手法の変更を行います。

※交点、矩形エッジ、マークサーチ交点検出でパタン登録を行った場合、手法の変更は出来ません。パタン 名称の変更のみ可能です。

3.1 サーチパラメータ初期値設定変更

各サーチ手法で登録したパタンのサーチパラメータ初期値を変更することが出来ます。

登録したパタンを表示し、「サーチパラメータ設定」でパラメータを決定しておきます。 「サーチ手法変更」ボタンを押します。

初期値設定ダイアログが表示されます。写真はグレイサーチの場合です。

システム初期値		
	現在の初期値	現在の設定値
1	1	1
50	50	50
60	60	60
通常精度	高精度	高糖度
1	9	9
0	0	0
0	0	0
2	2	2
0	0	0
4 近傍	4 近傍	4 近傍
OFF	OFF	OFF
OFF	OFF	OFF
Default	Default	Default
サーチスコア順	サーチスコア順	サーチスコア順
0	0	0
1.000	1.000	1.000
1.000	1.000	1.000
全面	指定範囲	指定範囲
(0, 0)	(282, 254)	(282, 254)
(0, 0)	(1781, 1374)	(1781, 1374)
処理なし	処理なし	処理なし
ON	ON	ON
処理なし	処理なし	処理なし
	60)通常精度 1 0 0 2 0 4 近(傍 OFF OFF Default サーチスコア順 0 1.000 1.000 全面 (0, 0) (0, 0) 処理なし ON 処理なし	60 60 通常精度 高精度 1 9 0 0 2 2 0 0 4込だ傍 4込だ傍 0FF OFF OFF OFF 0 0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,0 (1,781, 1374)

Gray	V No 0019	
Gla	y NO.0019	

初期値リセット		初	期値登録
	システム初期値	現在の初期値	現在の設定値
サーチ個数	1	1	1
途中相関値	50	50	50
最終相関値	60	60	60
精度	通常精度	高精度	高精度
複雑度	1	9	9
横方向同一解みなし範囲	0	0	0
縦方向同一解みなし範囲	0	0	0
サーチ開始圧縮度	2	2	2
サーチ終了圧縮度	0	0	0
精サーチ・サブピクセル推定近傍	4 近傍	4 近傍	4 近傍
サーチウインドウ周囲接触	OFF	OFF	OFF
反転パタン検出	OFF	OFF	OFF
実行オプション	Default	Default	Default
複数回答の選択	サーチスコア順	サーチスコア順	サーチスコア順
複数回答の選択 No.	0	0	0
複数回答の選択 Width	1.000	1.000	1.000
複数回答の選択 Height	1.000	1.000	1.000
サーチ範囲設定	全面	指定範囲	指定範囲
サーチ範囲設定 左上	(0, 0)	(282, 254)	(282, 254)
サーチ範囲設定 右下	(0, 0)	(1781, 1374)	(1781, 1374)
パタン名称			
前処理 画像用 <mark>[1]</mark>	処理なし	処理なし	処理なし
前処理 画像とパタンで同じ設定	ON	ON	ON
前処理 パタン用[1]	処理なし	処理なし	処理なし
□全設定の表示			閉じる

初期値リセット	現在の初期値をリセットしシステム初期値に戻します。	
初期値登録	パタン設定値の内容を現在の初期値に登録します。	
システム初期値	FV-alignerII の初期値の内容が表示されます。	
現在の初期値	現在の初期値が表示されます。パタン新規作成時には、このパラメータで生成されます。	
	ピンク色に表示されている個所は、システム初期値と異なる部分です。	
現在の設定値	現在選択されているパタンのパラメータが表示されます。	
	ピンク色に表示されている個所は、現在の初期値と異なる部分です。	
	薄いピンク色に表示されている個所は、現在の初期値とは同じであるが、システム初期	
	値とは異なる部分です。	
※パタンの新規登録について		
パタン登録では、既存のパタンが「有る」状態で新規登録する場合と、既存のパタンが「無い」状態で新規		
登録する場合で動作が異なります。		

既存のパタンが「有る」場合 → 既存のパタンパラメータを引き継ぎます。 既存のパタンが「無い」場合 → 初期値設定でパタンが作成されます。

4. パタン中心設定

4.1 手動中心設定

登録したパタンの中心設定を手動で行います。手動中心設定をクリックします。

下写真ではGUI設定方式を点による指定で中心設定を行っています。

パタン番号	パタン番号が表示されます。
パタン名称	パタン名称の設定を行っている場合にパタン名称が表示されます。
	点による指定 :十字線をトラックボールで移動させて中心を決める方法です。
ᅄᆧᇌᆕᆂᆃ	矩形による指定 :パタンを矩形で囲み中心を決める方法です。
001設定方式	4 直線による指定∶パタンを4直線で囲み中心を決める方法です。
	楕円による指定 ∶円を4方向から調整して中心を決める方法です。
元画像表示	原画像表示、フィルタ後画像表示を切り替える事が出来ます。
エッジ表示	エッジを表示します。
OK	設定した中心位置を保存します。
キャンセル	中心設定をキャンセルします。

4.2 自動中心設定

登録したパタンの中心設定を自動で行います。自動中心設定をクリックします。

下写真では中実円で中心設定を行っています。

元画像表示	原画像表示、フィルタ後画像表示を切り替える事が出来ます。
表示内容	テンプレート :テンプレート(円、長方形、トンボ)のみを表示します。 エッジ :エッジのみを表示します。 テンプレート,エッジ:テンプレートとエッジの両方を表示します。
検出条件	自動 自動 :自動で形状を判断して中心検出をします。 中実長方形・中空長方形・中実円・中空円・中実トンボ・中空トンボ・2 値 重心・隅・中実凸いずれか選択すると、選択した形状で中心を自動で検出します。 4 直線中心:中心は上下の枠で検出した 2 直線の中線と左右の枠で検出した 2 直線の中線の交点になります。 エッジ重心:パタンのエッジ点の重心を中心とします。 円検出 :楕円形状のような場合に使用します。

■隅について

隅検出を行うと、ハフ変換により矩形の隅が検出され、パタン中心が隅の位置に移動します。隅の候補が 複数ある場合は、選択画面が表示されるのでマウスクリックで選択した隅が選ばれます。ただし、切り取っ た直線はカメラで入力した直線より短いため直線検出が不安定になる場合が有りますのでその場合は、手動 で中心設定を実施してください。

注意:「自動」では隅は検出されません。

■凸マーク自動中心検出パラメータとエッジ検出範囲について

項目	内容
エッジしきい値	中心を求める際のエッジ検出時のしきい値を設定します。
対象物の色	マークが背景よりも暗い場合は黒、明るい場合は白を選択します。
画像表示部	テンプレート表示時は検出した4辺および中線を表示します。 エッジ表示時は検出したエッジを表示します。

各辺を検出する際に、端からサイズの1/4の幅(高さ)までをエッジの検出範囲としています。

よって隅から 1/4 のエリアに各辺(下図、凸マーク自動中心検出に使用するピンク線部分)が入っていない場合、自動中心検出は出来ませんのでご注意ください。

4 直線中心をクリックすると上下左右に枠が表示されますので検出したい直線に枠を合わせ、OK をクリックします。エッジ点は黄色の十字で表示されます。エッジ点が表示されない場合はパラメータの調整を行ってください。

自動中心設定	×
- S - S - S - → 縮小 拡大 等倍 フィット AScope	パタン番号 24
Scale:385.5%	
	表示内容 □元画像表示 テンプレート + エッジ ~
	検出条件 方法1 方法2
	2値重心 隅 中実凸
	▲ 4直線中心 エッジ重心 円検出
	エッジ計測方向 外→内 〜
	エッジ閾値 10 < >
	ロバスト重み 3 <>
L」 画像上の図形を操作し、エッジ計測位置を設定してください。	OK キャンセル

エッジ計測方向	エッジ検出時の計測方向を設定します。
エッジ閾値	エッジ検出時のエッジ閾値を設定します。
ロバスト重み	エッジ検出時の重みしきい値を設定します。 検出された直線に近いエッジ点の重み係数を大きくし、遠いエッジ点の係数を 小さくして再検出を行う時の直線とエッジ点の距離(0.01~100画素)を設定し ます。

■エッジ重心について

エッジ重心をクリックするとパタンのエッジ検出を行い、重心点を回答とします。

※パラメータについては FPM と同様になりますので、相関エッジフィルタについては「6.2.1 相関エッジフィルタ」を、ソーベルフィルタについては「6.2.2 ソーベルフィルタ」を参照ください。

5. サーチ手法 Gray

5.1 Gray とは

登録されたパタン(濃淡データ)を対象画像と比較し、一致度(スコア)を算出してマーク検出を行う 手法です。

(有効事項)	・画像の明るさが変動する。 ・濃淡差が少ない。	(条件事項)	・サイズ変化がない。 ・回転はほとんどない。 ・潰れや欠けがない。
--------	----------------------------	--------	---

(有効例)

井드	÷		井
登録マーク(例)	明るさ変動	少ない濃淡差	焦点ボケ

濃淡データ:登録パタン(スコア100%)に対して同じ形状であった場合、濃度分布が登録パタンと 異なると一致度も低く、濃度分布が登録パタンと近くなるほど一致度が高くなる。 また、形状が変わると一致度は低くなります。

5.2 Gray パラメータ設定

Grayのパラメータ設定を行います。サーチパラメータ設定をクリックします。

サーチパラメータ設定	[019 :]								×
<u>♀</u> ♀ 縮小 拡大	▲ S 第倍 フィット	*- AScope	☞ 画像読込	 ♀ 連続取込 CH切換 	<mark>册</mark> サーチ実行	■ 表示切換	表示画像	元画像表示	~ त्
<< СН 3 5 сеје: 12,0%			сно 🖳 🛄 🛃			CH 1 >>	前処理	Ŧ	パタンマスク
							サーチ個数		1
							スコア閾値	途中相関	随 50
							精度	★	11値 60
							複雑度	1 (-	単純) ~
							反転パタン林	剣出 検出	出しない ~
								11羊糸田11分	定
							サーチ範	囲設定	複数回答の選択
								1	
									la a tait
						オフション	OK		キャンセル

表示画像	元画像表示 ・ 生画像の表示を行います。
	前処理結果画像表示∶前処理を行った画像の表示を行います。
前処理	「10. 前処理」を参照してください。
パタンマスク	「11. パタンマスク」を参照してください。
サーチ個数	複数個のマークをサーチさせ、その内の1つを回答としたい場合に使用します。
	途中相関値:取り込んだ画像より登録したパタンに近い候補パターンを挙げるため
	の検出合格ラインです。登録したパタンを100%とし、途中下限値を50%
	と設定すると、50~100%の範囲のマークを検出します。
ファマ関値	(※最終相関値より低い値を設定してください)
目置にてく	
	最終相関値∶最終的に探し出したいマークを判定するための検出合格ラインです。
	登録したパタンを100%とし、スコア下限値を80%と設定すると80~100%
	の範囲のマークを検出します。
	検出の位置決め誤差の精度を選択します。
精度	「通常精度・高精度・超高精度・ウルトラ超高精度」に従って精度が高くなり、検出時
	間が長くなります。
	圧縮度を内部で自動決定する為の指標です。 数値が大きい方が複雑度が高いことを
複雑度	意味します。1を指定するとサーチ開始圧縮度が高圧縮に設定され、9を指定すると
	サーチ開始圧縮度が低圧縮に設定されます。
反転パターン	白黒が反転したパタンを検出するかどうかの設定です。
詳細設定	「5.3 Gray 詳細設定」を参照してください。

✓
 の設定での動作を例に説明します。

1.y位置でソートする。画像の下から上に向かう順序でソートします。

2. もっとも下に有る位置を基準に、「パタンの高さ×範囲(Range)」設定の範囲で、近い高さに有るもの を探す。

範囲(Range)の初期設定値は、1.0です。小さくすると、ワークが傾いたときに同じ行になりません。大きくすると、ワークの傾きには強いですが、上の列と切り分けられなくなります。

3. 範囲内にあったものだけを、左から右にソートし、結果に格納します。結果に格納後、元データからは 削除します。残った元データを用いて、2番→3番を行い、元データが無くなるまで繰り返します。

5.3 Gray 詳細設定

Grayの詳細パラメータの設定を行います。詳細設定をクリックします。

広大	▲ N 等倍 フィット A:	 Scope	回像読込 連続取込	Image: Base of the second secon	■ 表示切換	表示画像	元画像表示	5
3	•	C	но 🦞 🛛 😫 🔮		CH 1 >>	前処理	<u>₽</u>	パタンマス
						サーチ個数		1
						スコア閾値	途中相関	值
						** **	最終相関	值
						有度 復雑度	通开)作用人员。 単 結 本)
						反転パタン村	食出 検出	ー。) 3しない
							11羊条用11分	定
								~_ /5*//□次//3
	サーチ設定						ZÆ	板奴凹合い地
	グレーサー	Ŧ						
	,							
	(<u>+</u>)+)		廿二千(周逝)					
		-						
		50	途中相関他					
		60	最終相関値					
		0	横方向同一解み	はし範囲				キャンカフレ
		0	縦方向同一解み	はし範囲				145 EW
	通常	精度 ▼	精度					
		1	複雑度					
		2	サーチ開始圧縮別	ŧ				
		0	サーチ級フ圧線	÷				
			 A 1000 TYTOURY 	2				
		*	1±11 - 11-0101		÷			
	4近行		精サーチ・サブピク	7セル推定近6	芳			
	4近() 回サ	旁 マ	精サーチ・サブピク 接触	7セル推定近6	旁			

サーチ個数	複数個のマークをサーチさせ、その内の1つを回答としたい場合に使用します。
	取り込んだ画像より登録したパタンに近い候補パターンを挙げるための検出合
途山相関値	│格ラインです。登録したパタンを100%とし、途中下限値を50%と設定すると、
心中10因但	50~100%の範囲のマークを検出します。
	(※最終相関値より低い値を設定してください)
	最終的に探し出したいマークを判定するための検出合格ラインです。
最終相関値	登録したパタンを 100%とし、スコア下限値を 80%と設定すると 80~100%の範囲
	のマークを検出します。
	サーチ結果が近い位置に見つからないようにするための設定です。
横方向同一解	サーチで複数個見つけた場合、近い距離のものを排除します。
みなし範囲	最終的な回答の出力時に、同一の解であるとみなす範囲を指定します。0を入力
	した場合、パタンサイズの半分になります。
	サーチ結果が近い位置に見つからないようにするための設定です。
縱方向同一解	サーチで複数個見つけた場合、近い距離のものを排除します。
みなし範囲	最終的な回答の出力時に、同一の解であるとみなす範囲を指定します。0を入力
	した場合、パタンサイズの半分になります。
	検出の位置決め誤差の精度を選択します。
精度	「通常精度・高精度・超高精度・ウルトラ超高精度」に従って精度が高くなり、検
	出時間が長くなります。
	圧縮度を内部で自動決定する為の指標です。 数値が大きい方が複雑度が高い
複雑度	│ことを意味します。1を指定するとサーチ開始圧縮度が高圧縮に設定され、9を
	指定するとサーチ開始圧縮度が低圧縮に設定されます。
エ問始に始度	サーチ開始圧縮度を指定します。圧縮度がnの時、2の-n乗倍の画像でサーチを
サーナ開始圧縮度	開始します。
山、エクマロ院由	サーチ終了圧縮度を指定します。圧縮度がnの時、2の-n乗倍の画像でサーチを
サーナ於「圧陥反	完了します。
精サーチ・サブピクセル	精サーチ・サブピクセル推定に用いる近傍を指定します。8近傍を指定する場合、
推定近傍	サーチ終了圧縮度は0を推奨します。
サーチウインドウ周囲	加田笠田のは地に接触するフークを拴山計争とするかどうかのフィッチです
接触	処理範囲の外枠に接触するマークを快田対象とするかとうかのへてッテです。
反転パターン検出	濃度が反転したパターンを検出対象とするかどうかのスイッチです。
実行ナプション	Default、Enforce、Enforce2から選択します。
天174 ノンヨン	詳細は「5.3.1 実行オプションの解説」を参照下さい。

5.3.1 実行オプションの解説

Default、Enforce、Enforce2に関して、それぞれ設定出来る項目が変わってきます。

	Default	Enforce	Enforce2
精度	•	×	×
複雑度	•	×	×
サーチ開始圧縮度	×	•	•
サーチ終了圧縮度	×	•	•
精サーチ・サブピクセル推定近傍	×	×	•

●:設定可 ×:設定不可

Default	この設定は、パタンや画像の大きさと「精度」「複雑度」の組み合わせで、どれぐらいの圧 縮率からサーチを開始して、どの圧縮率で終了させるのかが自動決定されます。 そのため、もしサーチ出来なかった場合、なぜサーチ出来ないのかが解りにくいという特徴 があります。
Enforce	この設定は、開始圧縮度と、終了圧縮度を指定することで、今までサーチが出来なかった ケースでもサーチが出来るようになったりします。 たとえば、開始圧縮度が高すぎて、絵がつぶれてしまうような場合、低い圧縮度から始める ことで、見つけられるというものです。 圧縮度は0が無圧縮で、1が1/2、2が1/4、・・・、nの場合2の-n乗となります。 圧縮度は0~9の値が指定できます。(9が指定されると1/512となります。)
Enforce2	この設定はEnforceの上位互換で、「精サーチ・サブピクセル推定近傍」が設定できるように なったものです。 Enforceのときは、「精サーチ・サブピクセル推定近傍」は4近傍(Neib4)固定で、Enforce2 のときは、「精サーチ・サブピクセル推定近傍」は、4近傍(Neib4)または、8近傍(Neib8)を 選択できるようになっています。

※実行オプションのデフォルトは "Default" になっています。もし "Default" でサーチが出来ない場合、 本設定を "Enforce" "Enforce2" に変更して、圧縮度のパラメータ調整を行いサーチ実行してみてくだ さい。

6. サーチ手法 FPM

6.1 FPM とは

登録されたパタン(エッジデータ)を対象画像と比較し、一致度(スコア)を算出してマーク検出を行う 手法です。

(有効事項)	 ・画像の明るさが非均一に変動する。 ・場合によってマークの一部が遮蔽される。(欠け) ・マークが回転する。 ・マークサイズが変動する。 ・グレイサーチ以上の精度が得られ、しかも様々なパタン状態に対応。 	(条件事項)	・エッジ情報の過不足によって、 誤サーチの要因や膨大な処理 時間の発生につながる。
--------	--	--------	---

(有効例)

+	×	+	
登録マーク(例)	回転	マークサイズ変動	遮蔽・欠け・重なり

エッジデータ:登録されたパタンの輪郭情報を元に、対象画像が同じ形状であれば マークサイズ変動,回転,明るさ変動に関わらず輪郭情報の一致度は高くなり またマークの欠落が激しい場合は一致度が低くなります。

「FPM」は、新しいサーチ機能の呼び名です。

- 「Gray」サーチは正規化相関パタンマッチングに対し、「FPM」は特徴点応用マッチングです。
- 「Gray」サーチの濃度差情報の代わりをエッジ情報で行なうサーチとお考えください。

FPM = Feature Point Matchingの略

6.2 FPM サーチパラメータ設定

FPMのパラメータ設定を行います。サーチパラメータ設定をクリックします。

	■ 示切換 表		
		反不画像 元画1	象表示
	CH1>> t 2 7	(大田)家 (2) (四) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	************************************
0	ב ה י י י י י י י י י י י י י י י י י י	エッジ種性 「『 「シジ抽出設定 」マッジ抽出設定 個課 画像用 パタン用 フィルタサイズ 分散閾値 [1 目間エッジ汚金度闘? ソーベルエッジ強度	制 使性 スコア関値 に ッジブイルタ W 13 25 ii 160 関値 120
		コエッジ表示 FPMツール サーチ範囲設定	 通常 詳細設定 複数回答の選択

	元画像表示
表示画像	前処理結果画像表示:前処理を行った画像の表示を行います。
前処理	「10. 前処理」を参照してください。
パタンマスク	「11. パタンマスク」を参照してください。
サーチ個数	複数個のマークをサーチさせ、その内の1つを回答としたい場合に使用します。
	ワークの回転範囲を設定します。値の範囲が狭いほど処理時間が短縮します。
同転(座)	中心角度:中心角度の設定を行います。(基本0のままで良いです。)
回戦()支)	振れ幅 ∶振れ幅の角度の設定を行います。
	(例)中心0度、振れ幅5度と設定した場合、±5度が回転範囲となります。
スケール(%) ワークの膨張・収縮率を設定します。値の範囲が狭いほど処理時間が短縮し	
	Low : ここでのスコア閾値は、粗サーチを実行した場合に圧縮率の低い時点で使用す
	る判定値です。設定された圧縮率を内部処理上において徐々に下げてサーチを実
	行しますが、低圧縮のときに使用しています。スコアを小さくしすぎると誤サー
	チの要因となり、大きすぎるとサーチを失敗します。
スコア閾値	通常の使用の場合、スコア閾値(High)と同じ値を設定します。
	│ │High:ここでのスコア閾値は、粗サーチを実行した場合に圧縮率の高い時点で使用す
	る判定値です。設定された圧縮率を内部処理上において徐々に下げてサーチを実
	行しますが、高圧縮のときに使用しています。スコアを小さくしすぎると誤サー
	チの要因となり、大きすぎるとサーチを失敗します。

■辞書式順序のアルゴリズムについて

1.y位置でソートする。画像の下から上に向かう順序でソートします。

 もっとも下に有る位置を基準に、「パタンの高さ×範囲(Range)」設定の範囲で、近い高さに有るものを 探す。範囲(Range)の初期設定値は、1.0です。 小さくすると、ワークが傾いたときに同じ行になりません。 大きくすると、ワークの傾きには強いですが、上の列と切り分けられなくなります。

Range Height 設定値が 1.0 だった場合、パタン縦サイズ と同じ範囲内を探す。 範囲内にあったものだけを、左から右にソートし、結果に格納します。
 結果に格納後、元データからは削除します。残った元データを用いて、2番→3番を行い、元データが 無くなるまで繰り返します。

6.2.1 相関エッジフィルタ

■フィルタの種類について

フィルタは「相関エッジ」と「ソーベル」の2種類のフィルタを用意しています。

「相関エッジ」または「ソーベル」のどちらかを選択してエッジを抽出します。

相関エッジフィルタを使用した場合は、多少の濃度変化が画像に現れても、ある程度エッジ情報に影響な いように処理上で吸収することができます。ロット毎に少しワーク画像に変化が現れるときなどは基本的 に「相関エッジ」フィルタを使用してください。ソーベルフィルタは、登録パタンとサーチ対象画像が比 較的安定した画像のときのみ使用します。

ソーベルフィルタを使用すると、相関エッジフィルタと比較して、若干処理時間を短縮できます。

エッジ抽出設定				
木目間	関エッ	ジフィ	ルタ	•
画像用 パタン	用			
フィルタサイズ	w	13	н	5
分散閾値 25				
相関エッジ強度閾値 160				
ソーベルエッジ強度閾値		間値		120

エッジ抽出設定	
フィルタ	相関エッジフィルタ、またはソーベルフィルタを選択します。
画像用 パタン用	設定は画像用、パタン用それぞれで設定する事が出来ます。
フィルタサイズ	 W: エッジを抽出するときに使用する矩形の幅です。 矩形を1画素ずつずらしながら画像に当てはめ、矩形の内部が定義されている曲線といかに一致しているか調査します。定義されている曲線です。値は奇数で設定します。 H: エッジを抽出するときに使用する矩形の高さです。矩形を1画素ずつずらしながら画像に当てはめ、矩形の内部が定義されている曲線といかに一致しているか調査します。定義されている曲線とは、後述「シグモイド関数パラメータ」で設定する曲線です。値は奇数で設定します。

6.2.2 ソーベルフィルタ

■フィルタの種類について

フィルタは「相関エッジ」と「ソーベル」の2種類のフィルタを用意しています。

「相関エッジ」または「ソーベル」のどちらかを選択してエッジを抽出します。

相関エッジフィルタを使用した場合は、多少の濃度変化が画像に現れても、ある程度エッジ情報に影響な いように処理上で吸収することができます。ロット毎に少しワーク画像に変化が現れるときなどは基本的 に「相関エッジ」フィルタを使用してください。ソーベルフィルタは、登録パタンとサーチ対象画像が比 較的安定した画像のときのみ使用します。

ソーベルフィルタを使用すると、相関エッジフィルタと比較して、若干処理時間を短縮できます。

エッジ抽出設定	
シーベルフィル	হ 🗸
画像用 パタン用	
フィルタサイズ W 13	Н 5
分散閾値 25	
相関エッジ強度閾値 160	
ソーベルエッジ強度閾値 120	

エッジ抽出設定	
フィルタ	相関エッジフィルタ、またはソーベルフィルタを選択します。
画像用 パタン用	設定は画像用、パタン用それぞれで設定する事が出来ます。
ソーベル エッジ強度閾値	エッジを抽出するエッジの強度レベルです。 ソーベルの計算時に行なう8近傍中央画素の計算結果が、ここで設定した値未満の場 合は0を適用してエッジとみなさないようにします。 上記はあくまで説明と考えていただき、実際には、エッジを表示しながらパラメータ 値を変えて、元画像に対してきれいなエッジが表示される位置を最適値と考えてくだ さい。

6.3 FPM ツール

FPM ツールとは、FPM のパラメータを自動で決定する補助ツールになります。 パラメータの組み合わせでエッジ点検出を行い、検出したエッジ点数でソートさせてグラフに表示します。 トラックボールでグラフをクリックして画面を見ながら最適なエッジが表示される場所を探します。

●操作手順

- ① 手法を Correlation(相関エッジ)、Sobel(ソーベル)から選択します。
- ② 緑の三角ボタンをクリックします。エッジ点検出を行い、結果をグラフに表示します。
- ③ グラフ上をクリックします。パタン部分にエッジが表示されますので、画面を見ながら最適なエッジが 表示される場所を探します。 最適な場所が決まりましたら OK をクリックします。設定値が保存され、選択されている手法とパラメ ータ値がアライナーに反映されます。

Correlation(相関エッジ)パラメータ	
EdgeThreshold(エッジ強度閾値)	「6.2.1 相関エッジフィルタ」を参照ください。
NmsLength(非極大抑制処理フィルタ片幅)	「6.4.4 相関エッジ特徴量抽出用」を参照ください。
RegionHeight(フィルタサイズH)	「6.2.1 相関エッジフィルタ」を参照ください。
RegionWidth(フィルタサイズW)	「6.2.1 相関エッジフィルタ」を参照ください。
SigmoidK(シグモイド関数)	「6.4.4 相関エッジ特徴量抽出用」を参照ください。
VarThreshold(分散閾値)	「6.2.1 相関エッジフィルタ」を参照ください。

Sobel (ソーベル)パラメータ	
EdgeThreshold(エッジ強度閾値)	「6.2.2 ソーベルフィルタ」を参照ください。
NmsLength(非極大抑制処理フィルタ片幅)	「6.4.5 ソーベル特徴量抽出用」を参照ください。

Visualization	
Edge	エッジの表示極性の設定を行います。
EdgeColor	エッジ点の描画色の設定を行います。
EdgeStyle	エッジ点の形状の設定を行います。

6.4 FPM 詳細設定

Q Q Q	5°	rà G	1 1 11 11		
縮小 拡大 等低	홈 기ット AScope	画像読込 連続取込	CH切換 サーチ実行 表示切	換表示画像元画像表示 ~	
<< CH 3	c		CH	1>> 前処理 パタンマスク	
				サーチ個数 1	
				回転(度) 中心角度 0	
				振れ幅 2	
				スケール(%) 100 - 100	
				スコア関値 Low 50 High 50	
				相関エッジフィルター	
				画像用 パタン用	
				フィルタサイズ W 13 H 5	
				分散閾値25	
				相関工业2次金库関値 160	
				ソーベルエッジ7全度閾値 120	
				ロエッジ表示 通常 🗸	
				FPMツール 詳細設定	
				サーチ範囲設定 複数回答の選択	
			オプ	ンヨン OK キャンセル	
-チ設定 PM					
-+設定 基本				□領域スコア算出用	
-+F設定 PM 基本] サーチ 個数			領域スコア算出用 □ 領域スコアを計算する	
-+設定 PM 基本	■ サーチ個数 ■ 回転中心角度 (-180~179)			領域スコア算出用 □領域スコアを計算する 誤差範囲	
-+設定 PM 基本 2	■ サーチ 個数 ■ 回転中心角度 (-180~179) 2 回転振れ幅 (0~180)	0 6	уቻх	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回]転戶
-+設定 PM 基本 	 ● サーチ 個数 ○ 回転中心角度 (-180~179) 2 回転振れ幅 (0~180) ○ スケール下限 (下限+上限) 	0 P.	уቻх уቻY	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回 0.500000 Y方向 0.500000 スパ]転角 ケー
ナ設定 PM 基本 000 1000 1000	 サーチ 個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) 	ピ ピ 1 誤	ッチ× ッチY Z差範囲	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回 0.500000 ∨方向 0.500000 スパ 1 画]転角 ケー j素
ナ設定 PM 基本 (100 100 50	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スケール上限(下限・上限) スコア閾値(Low) 	0 ピ. 1 誤 1 I.	ッチX ッチY J差範囲 ッジ点誤差範囲	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回 0.500000 ∨方向 0.500000 スパ 0.500000 √方向 1 面 0.200000 ノイズデータ重み係数	「転角
ナ設定 PM 基本 2 100 100 100 50	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スコア関値(Low) スコア関値(High) 	0 円 0 円 1 誤 3: 1/8 ~ 圧	ッチx ッチY J差範囲 ッジ点誤差範囲 :縮レベル	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回 0.500000 ∨方向 0.500000 刀 1 面 0.200000 ノイズデータ重み係数 60 スコア閾値	1転炉 つう
ナ設定 PM 基本	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限+上限) スケール上限(下限+上限) スコア関値(Low) スコア関値(High) 高精度ボーズ推定スコア関値 	0 5 0 5 1 誤 3:1/8 ~ 日 同極性 ~ I	ッチX ッチY J.差範囲 ッジ点誤差範囲 :縮レベル ッジ硷性	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回 0.500000 Y方向 0.500000 口 1 画 0.200000 ノイズデータ重み係数 60 スコア関値 不可欠領域スコア算出用	町転角
ナ設定 PM 基本 	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限+上限) スケール上限(下限+上限) スコア閾値(Low) スコア閾値(High) 高精度ボーズ推定スコア閾値 	0 0 0 0 0 0 0 0 0 0	ッチ× ッチY 巻範囲 ッジ点誤差範囲 :縮レベル ッジ極性	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 回 0.500000 Y方向 0.500000 口 1 画 0.200000 ノイズデータ重み係数 60 スコア閾値 不可欠領域スコア算出用 □不可欠領域スコア算出用	町転角
ナ設定 PM 基本 2 2 100 100 50 50 50 60 2 60 2 60 2 60	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スコア閾値(Low) スコア閾値(High) 高精度ボーズ推定スコア閾値 	0 円 0 円 1 誤 3:1/8 ~ 圧 同極性 ~ I;	ッチx ッチY 送範囲 ッジ点誤差範囲 縮レベル ッジ極性	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 0.50000 v方向 0.500000 v方向	転りたう
→設定 PM 基本 (00 2 100 100 50 50 (00 100 100 100 100 100 100 10	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スコア閾値(Low) スコア閾値(High) 高精度ボーズ推定スコア閾値 -ズ推定実行指示 	0 円 0 円 1 誤 3:1/8 ~ 圧 同極性 ~ I:	yチ× yチY 発範囲 yジ点誤差範囲 :縮レベル yジ極性 > 処理モード	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 0.500000 v方向 0.500000 v方向 0.500000 v方向 0.500000 v方向 1 画 0.200000 Jイズデータ重み係数 60 スコア閾値 不可欠領域スコア算出用 不可欠領域スコア算出用 不可欠領域スコア算出用 60 スコア閾値 	「転りた」の「素
+設定 PM 基本 2 100 100 100 50 ○ 50 ○ 高精度ボ・ 相関エッジフ・ 画像用 パタン	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スケール上限(下限・上限) スコア関値(Low) スコア関値(High) 高精度ポーズ推定スコア関値 -ズ推定実行指示 ۲ルタマ 特徴点計測フィルタ 	0 ピ 1 誤 1 I 3:1/8 V I 同極性 V I 高速	ッチ× ッチY 見差範囲 ッジ点誤差範囲 S縮レベル ッジ極性	領域スコア算出用 □領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 ノイズデータ重み係数 60 スコア関値 不可欠領域スコアを計算する 1 1 画素誤差範囲 60 スコア閾値	「転り」で「「素」」
+設定 PM 基本 2 100 100 100 50 50 ○ 60 ○ 100 100 50 ○ 10 ○ 100 ○ ○ 10 ○ ○ 10 ○ ○ 10 ○ ○ ○ ○ ○	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限+上限) スケール上限(下限+上限) スコア関値(Low) スコア関値(High) 高精度ボーズ推定スコア関値 -ズ推定実行指示 1ルタマ 特徴点計測フィルタ /用 	0 ピ 0 ピ 1 誤 3: 1/8 ~ 圧 同極性 ~ I: 高速	ッチ× ッチY !差範囲 ッジ点誤差範囲 :縮レペル ッジ極性 ✓ 処理モード	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 0.500000 v方向 0.500000 v方向 1 面 0.200000 ノイズデータ重み係数 60 スコア関値 不可欠領域スコア算出用 不可欠領域スコア算出用 ①不可欠領域スコア算出用 ① 不可欠領域スコア間値 80 スコア関値 	J転f ケー.
+設定 PM 基本 2 100 100 100 50 50 60 ○ 10 50 50 ○ 10 0 50 ○ 10 0 50 ○ 10 ○ ○ 10 ○ 10 ○ 10 ○ 10 ○ ○ 10 ○ 10 ○ ○ 10 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限+上限) スケール上限(下限+上限) スコア関値(Low) スコア関値(High) 高精度ボーズ推定スコア関値 -ズ推定実行指示 イルタ〜 特徴点計測フィルタ /用 Correlation)特徴量抽出用 横方向フィルタサイズ(奇数、縦 		ッチ× ッチY !差範囲 ッジ点誤差範囲 :縮レベル ッジ極性 ◇ 処理モード	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 ∨方向 0.500000 ∨方向 0.500000 √方向 0.200000 √イズデータ重み係数 60 スコア関値 不可欠領域スコアを計算する 1 画素誤差範囲 60 スコア関値 微量抽出用 海尾関値 	回転チー
→設定 PM 基本 基本 ① 2 ① 100 ① 100 ① 50 ○ 50 ○ 60 ○ 高精度ポ、 ○ 相関エッジフ・ ● (相関エッジフ・ ○ 5 (日) (りついのののののののののののののののののののののののののののののののののののの	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限+上限) スケール上限(下限+上限) スコア関値(Low) スコア関値(High) 高精度ボーズ推定スコア関値 -ズ推定実行指示 イルタマ 特徴点計測フィルタ /用 Correlation)特徴量抽出用 横方向フィルタサイズ(奇数、縦 		ッチ× ッチY !差範囲 ッジ点誤差範囲 :縮レベル ッジ極性 ◇ 処理モード (ノーベル:Sobel) 特 [120 Iッジi	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 0.500000 v方向 0.500000 v方向 0.500000 v方向 0.200000 ノイズデータ重み係数 60 スコア関値 不可欠領域スコアを計算する 1 画素誤差範囲 60 スコア関値 微量抽出用 200000 などの 	J転f ケー 元素
→設定 PM 基本 基本 1000	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限+上限) スケール上限(下限+上限) スケール上限(下限+上限) スコア関値(Low) スコア関値(High) 高精度ボーズ推定スコア関値 -ズ推定実行指示 イルタマ 特徴点計測フィルタ パロター、特徴量抽出用 横方向フィルタサイズ(奇数、縦- 縦方向フィルタサイズ(奇数、縦- 縦方向フィルタサイズ(奇数、縦- 	0 0 0 0 0 0 0 0 0 0	ッチ× ッチY 発華範囲 ッジ点誤差範囲 :縮レベル ッジ極性 ✓ 処理モード (ノーベル:Sobel)特 120 I yッジi 3 非極;	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 × 1 画 0.200000 ノイズデータ重み係数 60 スコア関値 不可欠領域スコアを計算する 1 画素誤差範囲 60 スコア関値 3、コア関値 微量抽出用 強度閾値 大抑制処理フィルタ片幅 	回転 f ケー う素
→設定 PM 基本 基本 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スフア閾値(-cw) スコア閾値(High) 高精度ボーズ推定スコア閾値 -ズ推定実行指示 イルタッ 特徴点計測フィルタ //用 Correlation)特徴量抽出用 横方向フィルタサイズ(奇数、縦・ 縦方向フィルタサイズ(奇数、縦・ 縦方向フィルタサイズ(奇数、縦・ 	0 년: 0 년: 1 誤 1 I: 3:1/8 圧 同極性 I: 高速	ッチ× ッチγ 送差範囲 ッジ点誤差範囲 :縮レベル ッジ極性 ✓ 処理モード (/ -ベル:Sobel) 特 120 Iッジ: 3 非極7	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 × 1 画 0.200000 ノイズデータ重み係数 60 スコア閉値 不可欠領域スコアを計算する 1 画素誤差範囲 60 スコア閉値 *微量抽出用 強度閾値 大抑制処理フィルタ片幅	J 転 ケー 三 素
→設定 PM 基本 基本 1000 1000 1000 500 500 600 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スケール上限(下限・上限) スコア閾値(-ligh) 高精度ボーズ推定スコア閾値 -ズ推定実行指示 イルタッ 特徴点計測フィルタ 第 (ホース・日本) (本) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)	0 ピ: 1 誤 1 I: 3:1/8 ✓ 圧 同極性 ✓ I: 高速	ッチ× ッチY 浸差範囲 ッジ点誤差範囲 :縮レベル ッジ極性 ✓ 処理モード (ノーベル:Sobel)特 120 Iッジ: 3 非極対	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 0.50000 v方向 0.5000 v方向 0.5000 v方向 0.5000 v方向	回転 定 一 〕 素
→設定 PM ま本 基本 1000 1000 1000 500 600 1000	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スフア閾値(Low) スコア閾値(High) 高精度ボーズ推定スコア閾値 ズ推定実行指示 イバタッ 特徴点計測フィルタ (新方向フィルタサイズ(奇赦、縦- 縦方向フィルタサイズ(奇赦、縦- ジガモイド関数)パラメータ 分散閾値 エッジ強度閾値 	0 円 0 円 1 誤 1 I: 3:1/8 ~ 圧 同極性 ~ I: 高速	ッチ× ッチY 送範囲 ッジ点誤差範囲 縮レベル ッジ極性 ✓ 処理モード (ノーベル:Sobel)特 120 Iッジ 3 非極対	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 0.200000 v方向 0.20000 v jult 0]転 チー 〕素
→設定 PM 基本 基本 1000 1000 1000 500 600 1000	 サーチ個数 回転中心角度(-180~179) 回転振れ幅(0~180) スケール下限(下限・上限) スケール上限(下限・上限) スフア閾値(Low) スコア閾値(High) 高精度ボーズ推定スコア閾値 ズ推定実行指示 イルタ〜 特徴点計測フィルタ (不相応) 特徴点計測フィルタ (本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本		ッチ× ッチY ジ点誤差範囲 縮レベル ッジ極性 ✓ 処理モード (ノーベル:Sobel)特 120 ェッジ 3 非極;	 領域スコア算出用 領域スコアを計算する 誤差範囲 0.500000 ×方向 0.500000 v方向 回 0.200000 Jイズデータ重み係数 60 スコア閾値 不可欠領域スコアを計算する 1 画素誤差範囲 60 スコア閾値 酸量抽出用 2.270 3.270 3.270 3.210 3.210	「 転 年 し う 素

FPMの詳細パラメータの設定を行います。詳細設定をクリックします。

サーチ個数	複数個のマークをサーチさせ、その内の1つを回答としたい場合に使用 します。
回転中心角度(-180~179)	回転中心角度の設定を行います。(基本0のままで良いです。)
回転振れ幅(0~180)	振れ角度幅の角度設定を行います。
スケール下限	スケール下限値の設定を行います。
スケール上限	スケール上限値の設定を行います。
ピッチX, ピッチY	最小検出間隔の設定を行います。。最小検出間隔はサーチの回答が同一の 解であるとみなす範囲で、回答候補の周辺で最小検出間隔以内にある別の 候補の出現を抑制します。単位は画素です。初期値はゼロで、その場合パタ ンのもつ特徴量から自動決定した数値が使われます。
圧縮レベル	検出したエッジ点情報の圧縮率を設定します。 抽出されたすべてのエッジ点に対してサーチを実行すると膨大な処理 時間がかかるため、何点かを最適に間引きした状態にしてからサーチを 実行することで処理時間を短縮します。ここで設定した値からサーチを 開始し、処理上で徐々に圧縮率を下げて粗サーチを完了します。 値が大きいほど、より圧縮したエッジ点情報に対してサーチを行ないま す。圧縮率を上げすぎると粗サーチ時に対象パタンが見つからない等の 影響が出てきます。処理時間の許す限り、圧縮率を下げてください。 0=圧縮なし 1=1/2圧縮 2=1/4圧縮 3=1/8圧縮 4=1/16圧縮 5=1/32 圧縮

誤差範囲	ここでのエッジ点誤差範囲は、粗サーチ計算処理上で、登録したパタ ンエッジ情報にどれだけ、サーチ対象画像が似ているかを示す1つ1つ のエッジ点の許容範囲を設定します。エッジ点誤差範囲の値が大きい ほど、似ていると判定します。値が大きすぎると似ていないものでも 似ていると判定しますので注意が必要です。値が小さいほど処理時間 が短縮します。
スコア閾値(Low)	ここでのスコア閾値は、粗サーチを実行した場合に圧縮率の低い時点 で使用する判定値です。設定された圧縮率を内部処理上において徐々 に下げてサーチを実行しますが、低圧縮のときに使用しています。ス コアを小さくしすぎると誤サーチの要因となり、大きすぎるとサーチ を失敗します。通常の使用の場合、スコア値(High)と同じ値を設定し ます。
スコア閾値(High)	ここでのスコア閾値は、粗サーチを実行した場合に圧縮率の高い時点 で使用する判定値です。設定された圧縮率を内部処理上において徐々 に下げてサーチを実行しますが、高圧縮のときに使用しています。ス コアを小さくしすぎると誤サーチの要因となり、大きすぎるとサーチ を失敗します。
エッジ点誤差範囲	ここでのエッジ点誤差範囲は、高精度ポーズ推定計算処理上で、登録 したパタンエッジ情報にどれだけサーチ対象画像が似ているかを示す 1つ1つのエッジ点の許容範囲を設定します。エッジ点誤差範囲の値が 大きいほど、似ていると判定します。値が大きすぎると似ていないも のでも似ていると判定しますので注意が必要です。値が小さいほど処 理時間が短縮します。
高精度ポーズ推定スコア閾値	この値が最終スコア閾値となり、判定結果に反映します。スコアを小 さくしすぎると誤サーチの要因となり、大きすぎるとサーチを失敗し ます。基本的に粗サーチのスコア閾値より値を若干大きくします(10 程度)。
エッジ極性	検出時のパタンのエッジ方向を設定します。 同極性:登録パタンと同じ極性のパタンのみを検出します。 反転極性:登録パタンと反対の極性のパタンのみを検出します。 両極性:同極性、反転極性両方のパタンを検出します。
高精度ポーズ推定実行指示	高精度ポーズ推定は粗サーチ後に更に精度を高めるための再計算処理 です。粗サーチのみで終了する場合は、チェックボックスのチェック を外します。円形マークの中心をサーチパタンの中心に設定した場合 や、サーチ精度にこだわらない場合は、このチェックを外すと処理速 度が短縮します。また、この処理では、圧縮率の設定値に関係なく、 圧縮なしのエッジ点情報から最終判定を行ないます。

6.4.2 領域スコア算出用

領域スコアを計算する	領域スコアを計算するは、粗サーチまたは高精度ポーズ推定を行なった後に、 見つかったパタンに対してここで設定したパラメータ値を元に再計算を行な い、最終判定を行ないます。粗サーチ・高精度ポーズ推定の処理の結果はすべ て加算法で行ない、スコア再計算は減算法で求めます。意図した箇所にサーチ できない場合は、スコア再計算を有効にすると、正規の場所を見つける確率が 高くなります。このチェックを外すと処理速度が短縮します。
X方向誤差範囲	X 方向の誤差範囲を設定します。粗サーチのみでスコア再計算を行なう場合の 推奨値は 2.0、高精度ポーズ推定を行なった後の推奨値は 0.5 です。単位は画 素です。
Y方向誤差範囲	Y方向の誤差範囲を設定します。粗サーチのみでスコア再計算を行なう場合の 推奨値は 2.0、高精度ポーズ推定を行なった後の推奨値は 0.5 です。単位は画 素です。
回転角誤差範囲	回転角の誤差範囲を設定します。粗サーチのみでスコア再計算を行なう場合の 推奨値は 2.0、高精度ポーズ推定を行なった後の推奨値は 0.5 です。単位は度 です。
スケール誤差範囲	スケールの誤差範囲を設定します。粗サーチのみでスコア再計算を行なう場合の推奨値は2.0、高精度ポーズ推定を行なった後の推奨値は0.5です。単位は%です。
画素誤差範囲	画素誤差範囲は、スコア再計算処理上で、登録したパタンエッジ情報にどれだけ、サーチ対象画像が似ているかを示す1つ1つのエッジ点の許容範囲を設定します。画素誤差範囲の値が大きいほど、似ていると判定します。値が大きすぎると似ていないものでも似ていると判定しますので注意が必要です。値が小さいほど処理時間が短縮します。
ノイズデータ重み係数	ノイズデータ重み係数は、サーチ結果用判定スコアの減点係数です。 ノイズと判断された画素の総数に設定値を掛けた値を判定用スコアから減点 します。仮に設定値を1.0にして、ノイズとみなされた個数が100個あれば判定 スコアが100点低くなります。実質0点となり、粗サーチもしくは高精度ポーズ 推定では一致度が100点だとしても、ノイズの重み係数で0点になり、サーチは 失敗したことになります。 ノイズの多い画像でこの値を設定する場合は、値を小さくします。
スコア閾値	ここでのスコア閾値は、スコア再計算を実行した場合においての最終判定値で す。この値が最終スコア閾値となり、判定結果に反映します。スコアを小さく しすぎると誤サーチの要因となり、大きすぎるとサーチを失敗します。基本的 に粗サーチのスコア閾値より値を若干大きくします(10程度)。

6.4.3 不可欠領域スコア算出用

不可欠領域スコアを計算する	不可欠領域スコアを計算するは、粗サーチまたは高精度ポーズ推定を行な った後に、見つかったパタンに対してここで設定したパラメータ値を元に 再計算を行ない、最終判定を行ないます。粗サーチ・高精度ポーズ推定の 処理の結果はすべて加算法で行ない、スコア再計算は減算法で求めます。 意図した箇所にサーチできない場合は、スコア再計算を有効にすると、正 規の場所を見つける確率が高くなります。このチェックを外すと処理速度 が短縮します。
画素誤差範囲	画素誤差範囲は、不可欠領域スコア算出計算処理上で、登録したパタンエ ッジ情報にどれだけ、サーチ対象画像が似ているかを示す1つ1つのエッ ジ点の許容範囲を設定します。画素誤差範囲の値が大きいほど、似ている と判定します。値が大きすぎると似ていないものでも似ていると判定しま すので注意が必要です。値が小さいほど処理時間が短縮します。
スコア閾値	ここでのスコア閾値は、不可欠領域スコア算出計算を実行した場合におい ての最終判定値です。この値が最終スコア閾値となり、判定結果に反映し ます。スコアを小さくしすぎると誤サーチの要因となり、大きすぎるとサ ーチを失敗します。基本的に粗サーチのスコア閾値より値を若干大きくし ます(10 程度)。

6.4.4 相関エッジ特徴量抽出用

-0	- (相関エッジ・Correlation) 特徴量抽出用				
1	「YEI第192.Correlation/ 特徴単価工用				
	13	横方向フィルタサイズ(奇数、縦≦横、縦×横≦255)			
	5	縦方向フィルタサイズ (奇数、縦≦横、縦×横≦255)			
	1.000000	シグモイド関数パラメータ			
	25	分散閾値			
	160	エッジ強度閾値			
	6	非極大抑制処理フィルタ片幅			

エッジ強度閾値	エッジを抽出するエッジの強度レベルです。 エッジの強度レベルとは、基本となるエッジの濃度分布曲線を用意して、その曲線を サーチ対象画像に当てはめ、似ているものは1に近く、異なれば0に近くなるよう式を 作成したものに255を乗算した値です。 設定した値以上をエッジとみなします。上記はあくまで説明と考えていただき実際に は、エッジを表示しながらパラメータ値を変えて、元画像に対してきれいなエッジが 表示される位置を最適値と考えてください。
非極大抑制処理 フィルタ片幅	非極大抑制処理フィルタ片幅は、サーチパタンを登録するマークの幅の片方の幅を設 にます。 細い傷や細い汚れは検出せずに、登録するマークのエッジのみを検出したい場合に用 います。登録するマークの幅が傷や汚れと同じ幅の場合は、マークのエッジのみ検出 はできません。

6.4.5 ソーベル特徴量抽出用

- (ソーベル: Sobel) 特徴量抽出用・

120 エッジ強度閾値

3 非極大抑制処理フィルタ片幅

6.4.6 特徴点計測フィルタ

相関エッジフィルタ 🔻 特徴点計測フィルタ

相関エッジフィルタ:相関エッジフィルタを選択します。 特徴点計測フィルタ ソーベルフィルタ :ソーベルフィルタを選択します。

6.4.7 処理モード

高速 処理モード \sim

・高速と通常の違いについて

項目	高速	通常
抽出 エッジ	視野内の画像を圧縮し、処理ポイントを 1/4 に 減少したあと、ポイントマッチングを行う。 (単純な画素飛ばしではなく、最適な圧縮を行 う)	視野内の全画素のエッジを取得した あとポイントマッチングを行う。
計算処理	単精度で計算。(オーバーフローしない範囲で) 四則演算の高速化。	倍精度で計算。(浮動小数点計算)

計算処理の点から、通常で使用していたFPMパタンを高速に切り替えただけでは、単精度計算に置き換えたときに若干の誤差が発生する場合があります。中心設定を設定し直すようにお奨めします。

7. サーチ手法 交点

7.1 交点とは

ガラス板などの縦横の端面を検出し、検出した縦の直線と横の直線の交点を算出して行う手法です。

(有効事項)	 ・パタンとして登録できる マークがない。 ・場合によってマークの一部が 遮蔽 される。(欠ける) ・マークサイズが変動する。 	(条件事項)	 ・端面がキレイである。 ・マークと背景の濃淡差がハッキ リしている。
--------	--	--------	---

(有効例)

マーク無し (端面検出)

異型マーク

(注)補助線を設定した登録パタンはキャリブレーションに使用できません。 FPM、Gray等、検出位置がX座標、Y座標ともに変化するサーチ方法を使用してください。 また、X座標またはY座標が変化しないマークの場合は、別のマーク(●マーク等)を使用してください。

7.2 交点パタン新規登録

パタン表示画面よりパタン新規登録をクリックするとパタン登録画面になります。 サーチ手法を交点に設定します。縦直線(赤色)、横直線(青色)をそれぞれ設定します。 登録をクリックしますと設定した直線の交点がパタンとして登録されます。

パタン登録												\times
♀ ♀ 縮小 拡大 << CH 3	AScope		СНО	■ 画像保存 ii 	■像読込	♀ 連続取込	<mark>鮰</mark> CH切换	₽ 画像作成 CH1>>	パタン番号		21	
Scale:41.99								616	パタン名を入力し	って下さ	ŝ	
2000000000	 0000000000	0000000000		00000000					サーチ手法: 交点			~
								-	交点手法	通常		~
								. 1 .	横	通常		~
									エッジ検出パラメー フィルタ 相	-タ 関エッシ	<i>「</i> フィルタ	~
								*	フィルタサイズ V 分散閾値	v	13 H	5
						-			相関エッジ強度隊	间值		160
								-	ソーベルエッジ強度	閾値		120
					•			**	I	ッジ表え	7	
	 								コーナー検出		タッチパット	
									ヒストグラム		ナーチ範囲言	没定
								オフション	모카			/

エッジ検出パラメータ	相関エッジフィルタ、またはソーベルフィルタを選択します。 エッジ表示をクリックして、検出したい直線にエッジが綺麗に出るようパラメー タ調整を行います。 パラメータについては FPM と同様になりますので、相関エッジフィルタについて は「6.2.1 相関エッジフィルタ」を、ソーベルフィルタについては「6.2.2 ソー ベルフィルタ」を参照ください。
------------	---

ヒストグラム	「2.4 ヒストグラム」を参照してください。
タッチパッド	パタン登録枠の位置、サイズを調整します。(タッチパネル操作用)
サーチ範囲設定	サーチ範囲の設定を行います。
オプション	
回転操作有効	本機能にチェックが入っている場合、設定するボックスの回転操作が有効になり ます。
処理範囲を使用しない	本機能にチェックが入っている場合、パタン登録時処理範囲を使用しません。
ヒストグラム	「2.4 ヒストグラム」を参照してください。

登録ボタンをクリックするとパタンが登録されます。 登録されたパタンが画面右上に表示されます。

7.3 交点サーチパラメータ設定

サーチパラメータ設定 [021:-----] × S A A S S * 縮小 拡大 等倍 フィット AScope 表示画像 元画像表示 << CH 3 сно 👰 🖬 😫 😫 CH 1 >> 前処理 回転範囲(度) 10 エッジ検出範囲 ●可変
 ○固定 許容角度+/-(度) 45.000000 エッジ検出パラメーター フィルタ 相関エッジフィルタ ~ フィルタサイズ W 13 H 5 分散閾値 25 _ 相関エッジ強度閾値 160 ソーベルエッジ強度閾値 エッジ表示 0 縱直線詳細 橫直線詳細 サーチ範囲設定 オプション ОK キャンセル

表示画像	元画像表示 :生画像の表示を行います。 前処理結果画像表示∶前処理を行った画像の表示を行います。
前処理	「10. 前処理」を参照して下さい。
回転範囲(度)	マークの回転許容値を設定します。
	交点検出時のエッジ検出範囲を指定します。
エッジ検出範囲	可変∶処理範囲の設定範囲内から大まかな交点位置を検出し、その情報からエッ ジの検出範囲を決定して、交点を再検出します。 実行時に直線の位置がずれている場合には、エッジの検出範囲もそのずれ に追従して動きます。
	固定:パタン登録画面で設定したエッジ検出範囲固定で交点を検出します。 実行時にパタン登録画面で設定したエッジ検出範囲外に直線がある場合に は、検出できなくなります。 固定の場合には、大まかな交点位置の検出を行わないため、可変の場合よ りも高速になりますが、ワーク供給位置のずれには弱くなります。

エッジ検出範囲設定による違い

パタン登録時に下図のような設定をした場合を考えます。 設定時に調整する口と口は、エッジ検出範囲を示します。

登録時から離れた位置にワークが供給された状態で交点検出を実行すると、可変の場合にはエッジの 検出範囲が追従するため、検出が成功します。固定の場合には、エッジの検出範囲が固定のため、検出 範囲内からエッジを検出できずにエラーとなります。ただし、エッジの検出範囲内でのワーク供給が可 能な場合には、どちらの設定でも検出が成功します。

このとき、固定の設定の場合には、可変の場合よりも短時間で検出可能です。

可変の場合 検出可

固定の場合 検出不可

	交差角度判定は、パタン登録時の交点の2直線交差角の値とサーチ時で得た2直線 の交差角を比較して、設定パラメータより値が大きい場合にNGとします。 値を0.00にしてサーチテストの実行を行うと、エラーとして現在の比較角度が表 示されます。表示された角度より大きな値を設定するとOKになります。 単位は度です。初期値は 45.00 です。 運転モード時のエラーは「サーチエラー」になります。 ※交差角度判定では2直線の鋭角を必ず算出します。 2直線の角度の算出の場合、計測したい角度が鋭角なのか鈍角なのか 処理上わからないためです。						
許容角度+/-(度)							
エッジ検出パラメータ	相関エッジフィルタ、またはソーベルフィルタを選択します。 エッジ表示をクリックして、検出したい直線にエッジが綺麗に出るようパラメー タ調整を行います。 パラメータについては FPM と同様になりますので、相関エッジフィルタについて は「6.2.1 相関エッジフィルタ」を、ソーベルフィルタについては「6.2.2 ソー ベルフィルタ」を参照ください。						
縱、横直線詳細	「7.3.1 縦(横)直線詳細」を参照ください。						
サーチ範囲設定	直線検出する範囲を調整します。						

縦(横)直線検出状態を設定します。

縦(横)直線	
直線フラフ	検出した直線のスコアを表示します。
世線ペコク	この値を参考に、ラインスコア閾値を決定してください。
検出本数	直線検出時に何本検出するかを設定します。
直線選択	直線検出数を複数に設定した場合、例えば右から1番目というように、どの線を
何番目	使用するかを設定します。
	投票数 …ハフ平面への「投票数」がスコアになります。
	近いエッジ数・・・求められた直線に近いエッジ点の数がスコアになります。
	(10 画素以内で、エッジ方向が±90 度以内のエッジ点数がスコアとなります。)
	※近いエッジ数を使う場合の利点
	数画素程度のギザギザな直線をハフ平面に投票した場合、エッジ方向がバラつく
スコア方式	ため、スコアが下がる傾向があります。
	そのため、短いはっきりとした直線と、長いけどギザギザな直線を見比べた時に、
	スコアが近い値になることがあります。
	そこで、短い直線はスコアを下げ、長い直線はスコアを上げるようにするために、
	直線に近いエッジ点の数をスコアとして再計算することで、判別できるようにな
	ります。
ラインスコア開値	短い直線を無視するためのパラメータです。
	直線のスコアがこの値に満たない(短い)直線は無視します。
	エッジを抽出する色の変化です。例えば白から黒に変化するエッジの場合、同極
極性	性を選択した場合は、エッジ方向に走査して白から黒に変化した位置をエッジ点
	とします。両極性の場合は、特にエッジ極性を意識しないエッジ抽出方法です。

再検出(直線高精度化)	
エッジ検出数	再検出時のエッジを取得する点数を設定します。
	エラン検山数が入さい場合は9 一 7 時間が増加しより。
検出方向	スコア順は最もエッジの強かった場所を結果とします。左→右、右→左、上→下、 下→上(交点手法で中線を設定した場合は、外側→内側、内側→外側)は、指定し た方向から検出し、エッジ閾値を最初に越えたピーク位置をエッジ位置としま す。
検出片幅	再検出時の各エッジの計測幅を設定します。 例えば「2」を設定すると自己と左右各2個を含めた計5個のエッジ点の平均値 を自己のエッジ点に置き換えることを順次全画素実施します。
エッジ閾値	再検出時のエッジ強度しきい値を設定します。
ロバスト重み	再検出時の重みしきい値を設定します。 検出された直線に近いエッジ点の重み係数を大きくし、遠いエッジ点の係数を小 さくして再検出を行う時の直線とエッジ点の距離(0.01~100画素)を設定しま す。
検出割合(%)	エッジ計測枠内の検出割合の値を設定します。100.0の値の場合、カメラ視野内 に100%エッジ計測枠が表示されている場合にOKとします。サーチテスト実行時 に一部でも隠れるとエラーとして現在のカメラ視野内のエッジ計測枠の割合が 表示されます。表示された割合より小さな値を設定するとOKとなります。 運転モード時のエラーは"サーチエラー"になります。
最小ピッチ	登録時の2直線のピッチを基準として、交点検出実行時に検出された2直線のピッチの下限値を設定します。0を設定するとピッチ判定は無効になります。
最大ピッチ	登録時の2直線のピッチを基準として、交点検出実行時に検出された2直線のピッチの上限値を設定します。0を設定するとピッチ判定は無効になります。

※再検出(直線高精度化)のエッジ検出数とエッジ計測幅について

(例)エッジ検出数:5 エッジ計測幅:1と設定した場合

■エッジ検出数

エッジ検出数を5と設定した場合、設定したボックス内に5本の直線(赤矢印)を張り、各直線で検出し たエッジ点から直線を精度良く検出し直します。使用するエッジ点は5点となります。

■エッジ計測幅

エッジ計測幅を1と設定した場合、上記エッジ検出にて検出したエッジ点の±1 画素分のエッジも見る 事となり(水色直線)、計3点のエッジの平均を取って直線を精度良く検出し直します。 使用するエッジ点は計15点となります。

※エッジ検出数、エッジ計測幅共に数を上げることで検出は安定する方向となりますが、タクトはその分増 加します。

※ロバスト推定の重みしきい値について

重みしきい値とは、下図における重みしきい値 Wのことです。単位は画素です。値の決め方としては次の ようになります。データのばらつきが大きいような場合は小さくすることによって高い精度が得られるよう になります。しかし、「データ数が少ない」「データのばらつきが大きい」という2つのケースでは、小さ くすることによって計算に使われるデータが少なくなるため統計効果が低減し、かえって精度が悪くなって しまいます。与えたデータのばらつきの標準偏差の1~3倍程度を目安としてください。なお、理論的には この値を無限大にすると最小2乗法と回答は一致します。

※最大ピッチ、最小ピッチについて

登録時に縦直線の右と左の直線がLのピッチだったとします。

最小ピッチはLに対して何%以上のピッチであればOKとするかを設定し、最大ピッチはLに対して 何%以下のピッチであればOKとするかを設定します。最小ピッチをMinL、最大ピッチをMaxLとすると、 交点検出実行時に右直線と左直線のピッチがMinLとMaxLの間にあれば、その直線が見つけるべき直線 だと判断します。

交点検出のアルゴリズムについて

交点検出処理は、大きく分けて2段階の処理が行われるようになっています。

前段でハフ直線検出による「仮の交点位置」の検出を行い、後段で求められた直線と仮の交点から、直線部 分に対し垂直方向に1次元エッジ検出を行うことで高精度な直線を求め直し、「最終的な交点位置」を決め ます。

設定画面の「再検出(直線高精度化)」の右側にあるチェックボックスを OFF にすると、後段の処理が行われ なくなり、前段で求められた「仮の交点算出」位置が「最終的な交点位置」となります。
8. 矩形エッジ

8.1 矩形エッジと円近似アライメント

・矩形エッジとは

矩形を指定し、その中を上下左右方向に複数本エッジ検出を行います。求められたそれぞれのエッジ点が サーチ結果となります。

※本サーチは、アライメント手法に"円近似アライメント"を設定する場合に使用します。

・円近似アライメントとは

下図のようなウエハーをアライメントする場合に使用します。 アライメント実行時、矩形エッジサーチで取得された Mark1~3 で円近似を行い、求められた円中心と、 ノッチマークを撮像した Mark4 での2マークアライメントを行います。 アライメントは円中心を基準とした片合わせ1が行われます。

8.2 パタン登録

計測範囲を設定します。計測範囲は画像上をドラッグするか、タッチパッドで位置、サイズを移動させて ください。計測ラインの方向、本数、濃淡変化を指定します。 設定後 "登録"ボタンをクリックするとパタン登録完了です。

※計測位置は固定のため、狭い範囲に設定しますと、ワーク供給にずれが発生した場合、エッジ部分が計測 範囲に入らずサーチエラーとなってしまいますのでご注意ください。

方向	エッジ検出する方向を"上から下""左→右""左←右""下から上"から指定します。
ライン本数	計測範囲に張るライン本数を設定します。
濃淡変化	濃淡の変化が"暗→明""明→暗"のどちらなのか設定します。

8.3 サーチパラメータ設定

サーチパラメータの設定を行います。

チバラメータ設定	[022 :]										×
▲ A 縮小 拡大	◎ 等倍	N Tryh	≁ AScope	☞ 画像読込	● 連続取込	CH切换	田 サーチ実行	■ 表示切换	表示画像	元画	象表示	~
<< CH 3				сно 🖳 🖬 🛓				CH 1 >>	前処	理	パタン・	לגד
									濃淡変化		暗→明	~
									極性		同極性	~
								· · · · ·	閾値種別		絶対濃度差	~
				1					エッジ閾値		30	.000000
									ライン片幅			1
									検出割合嚴	値		70
								Sec. 19			詳細設知	Ē
							-		サーチマスノ	5		
									□使用す	3		
						1			パタンゴ	選択		
								1. A.				
						- 1						
~~~~~~				 								
				 				オプション	Ok	(	キャン	211

濃淡変化	暗→明、明→暗を指定します。							
	同極性 :濃淡変化で指定した変化を見つけます。							
極性	反転極性:濃淡変化で指定した変化とは反対を見つけます。							
	両極性 ∶「暗→明」「明→暗」の両方を見つけます。							
	エッジしきい値を求める方法を指定します。							
しきい値種別	絶対濃度差∶濃度差でのしきい値							
	相対濃度値:ライン上濃度の最大値と最小値の差に対する割合							
	エッジ閾値							
エッジ閾値	絶対濃度差:濃度値の差(0~255)							
	相対濃度値:ライン上濃度の最大値と最小値の差に対する割合(%)(0~100)							
ライン片幅	計測ラインの片幅(0 以上)							
	計測ライン数に対して、エッジを見つけた数の割合しきい値(%)(0~100)を設定しま							
検出割合	す。							
しきい値	しきい値となる本数は、全計測ライン数から、マスクで計測されないライン数を引い							
	た値に対して、本設定の割合をかけたものとなります。							
詳細設定								
フィルタ足	微分を行う際のフィルタモデル							
Minus Foot,	- 0 0 +							
Length	minus foot minus len i plus len plus foot							
Plus Foot,	hinds_root hinds_root plus_root							
Length								
周辺情報片幅	サフビクセル計算に使用する周辺情報の片幅(0 以上)を設定します。 							

### 8.3.1 サーチマスク

直線エッジ計測を行う前に、対象画像に対してパタンマッチングを行い、見つけたサーチ結果領域をマス クし、エッジ計測対象から除きます。

サーチマスクに使用するパタンは、「FPM」または「グレイサーチ」で登録を行います。 サーチマスクの"使用する"にチェックを入れ、パタン選択で登録したパタンを割り当てます。

サーチパラメータ設定	[022 :]										×
♀ ♀ 縮小 拡大 << CH 3	ふ <table-cell> 等倍 フィット</table-cell>	AScope	■像読込 CH 0 0 1 2	連続取込	<mark>ﷺ</mark> CH切換	<del>田</del> サーチ実行	┗ 表示切换 CH 1 >>	表示画像	元画像表	示	~
<< CH 3								前処 濃淡変化 極性 閾値種別 エッジ閾値 ライン片幅 検出割合器	理 暗 絶	パタンマス →明 極性 対濃度差 30.00	>       >       00000       1       70
								-サーチマス ビ使用す パタン: No.	り る 選択 77	詳細設定	1
							オプション	Oł	<	キャンセル	,

任意の位置をマスク指定します。エッジ計測ラインがマスクにかかっている場合、そのラインは計測対象 外となります。

サーチマスクとパタンマスクを同時に使用することも可能です。



# 9. マークサーチ交点検出

### 9.1 マークサーチ交点検出とは

マークサーチ交点検出は、ワークの角を求めるための新たなサーチ手法です。 次のような動作となります。

#### (1)マーク登録

予め、パタン登録時にグレイサーチのためのサーチパタンと、縦・横の2直線とエッジ検出のための矩形を 設定します。



設定する位置は以下の5つです。 緑枠:サーチパタン登録位置 <mark>赤線:縦直線 赤枠:縦直線のエッジ検出枠 青線:横直線 青枠:横直線のエッジ検出枠</mark>

(2)サーチ実行

(2-1) マークサーチ

緑枠で設定されたサーチパタンで、グレイサーチを実行します。



(2-2)エッジ検出

マークサーチで求められた位置から、エッジ検出枠の位置を決定し、エッジ検出を行います。



(2-3)直線検出と交点算出



### 9.2 パタン登録

交点手法は「通常」「中線」「補助線」から選択が出来ます。

#### 通常の場合



緑枠が、サーチパタンの登録位置 赤線と赤枠が、縦線の登録位置 青線と青枠が、横線の登録位置 となります。

パタン登録											×
- ♀ ♀ 縮小 拡大	<ul><li>除</li><li>第倍</li><li>フィット</li></ul>	AScope		■ 画像保存 〔	☞ 画像読込	<b>♀</b> 連続取込	CH切換	● 画像作成	パタン番号	23	- 3
<< CH 3			CH 0	<u>9</u> 923				CH 1 >>	パタン名称:	1	
108.2 No. 108.2	•							0010	パタン名を入力し	いち不つ	
									サーチ手法:		
									マークサーチ交点材	剣出	~
									交点手法		
									新祥	中線	~
		4							横	中線	~
									補助線オプション		
									新花	固定	~
									横	固定	×
										タッチパッド	
								000000000000000000000000000000000000000	トストガラム	廿一千節田設	疜
								オプション	登録	キャンセル	

タッチパッドのボタンを押すと、ボタンクリックで操作を行うことが出来るタッチパッドが表示されます。



サーチ範囲設定ボタンを押すと、グレイサーチを行う領域の設定を行うことが出来ます。



パタン登録			×
	● 画像作成	パタン番号	23
<<снз Сно ОТАВ	CH 1 >>	パタン名称:	
Nask 727.04	CH4	パタン名を入力して	下さい
=195,86		サーチ手法:	
		マークサーチ交点検	± ~
		交点手法	
		縦補	1助線 ~
		横 中	線 ~
		補助線オプション	
		縦り	ーチ連動 ~
		横	定 ~
			タッチパッド
		ヒストグラム	サーチ範囲設定
	オプション	登録	キャンセル

補助線オプション

- ・固定 補助線の位置は固定となります。
- ・サーチ連動マークサーチ位置に合わせて補助線は移動します。



登録時:縦ラインが補助線設定





固定の場合

実行時:縦ライン(補助線)の位置は固定

サーチ連動の場合

実行時:縦ライン(補助線)の位置はサーチ結果に連動

# 9.3 サーチパラメータ設定

サーチパラメータの設定を行います。

サーチパラメータ設定 [024:]						×
	●         ●           画像読込         連続取込	3■ 田 CH切換 サーチ実行	┺ 表示切換	表示画像 5	元画像表示	~
<< CH 3 Server 200 FB	СНО 🧕 🖬 🛃 🧕		CH 1 >>	前処理	パタン・	לגד
				許容角度+/- グレイサーチ認 サーチ(個数 スコア間値 精度 復雑度 反転)なりへ射 縦 直線 検出方向 検出片幅 エッジ潤価値 ロバスト重み	(度) 45.0 定 1 途中相関値 通常精度 1(単純) 土 枝出しない 直線 スコア順 3.000	50 60 × × × 324 20 10 00
				1×meio(		
				サーチ範囲	没定 複数回答(	の選択
			オプション	ОК	キャン	216

<b>主</b> 一五 <i>伤</i>	元画像表示  「生画像の表示を行います。
衣示画像	前処理結果画像表示∶前処理を行った画像の表示を行います。
前処理	「10. 前処理」を参照してください。
パタンマスク	「11. パタンマスク」を参照してください。
专家会会 ( )	パタン登録時の2直線の成す角に対し、サーチ実行を行った際の2直線の成す角が、
計谷円度+/-(度)	どれぐらい違っていた場合異常と判定するかの設定です。
グレイサーチ設定	
サーチ個数	複数個のマークをサーチさせ、その内の1つを回答としたい場合に使用します。
	途中相関値:取り込んだ画像より登録したパタンに近い候補パターンを挙げるための
	検出合格ラインです。登録したパタンを100%とし、途中下限値を50%と設
	定すると、50~100%の範囲のマークを検出します。
→ _ → 80/±	(※最終相関値より低い値を設定してください)
スコア國個	
	最終相関値∶最終的に探し出したいマークを判定するための検出合格ラインです。
	登録したパタンを100%とし、スコア下限値を80%と設定すると80~100%の
	範囲のマークを検出します。
	検出の位置決め誤差の精度を選択します。
精度	「通常精度・高精度・超高精度・ウルトラ超高精度」に従って精度が高くなり、検出時
	間が長くなります。
	圧縮度を内部で自動決定する為の指標です。数値が大きい方が複雑度が高いことを意
複雑度	味します。1を指定するとサーチ開始圧縮度が高圧縮に設定され、9を指定するとサー
	チ開始圧縮度が低圧縮に設定されます。
反転パタン検出	白黒が反転したパタンを検出するかどうかの設定です。

縦直線、横直線	
エッジ検出数	矩形内でエッジ計測を行う計測ラインの本数を設定します。
	<u>エッジ検出数が大きい場合はサーチ時間が増加します。</u>
	検出方向を設定します。
	スコア順は最もエッジの強かった場所を結果とします。 左→右、右→左、上→下、
検出方向	下→上(交点手法で中線を設定した場合は、外側→内側、内側→外側)は、指定
	した方向から検出し、エッジ閾値を最初に越えたピーク位置をエッジ位置としま
	す。
	各エッジの計測幅を設定します。
検出片幅	例えば「2」を設定すると自己と左右各2個を含めた計5個のエッジ点の平均値
	を自己のエッジ点に置き換えることを順次全画素実施します。
エッジ問店	エッジ強度しきい値を設定します。
エッン國胆	閾値より大きい個所をエッジ点とします。
ロバフト電力	ロバスト推定法による直線近似を行い、この指定値(画素)よりも外れた点を除外
ロハスト里の	して直線を求めます。
<b>长</b> 山割合 (0/)	エッジ検出で、エッジの見つからなかった計測ラインが、指定の割合を超えた場
快山刮口(%)	合エラーとします。
	※交差手法で補助線を選択した場合にパラメータが表示されます。
補助線	<ul> <li>・固定 :補助線の位置は固定となります。</li> </ul>
	<ul> <li>・サーチ連動:マークサーチ位置に合わせて補助線は移動します。</li> </ul>
エーエな田弘ウ	↓ グレイサーチを処理する範囲を設定します。グレイサーチ後のエッジ検出には影
リーテ範囲設定	響しません。
ちをしなる、翌日	↓ グレイサーチ設定で、サーチ個数を2以上に設定し、複数回答が出た場合、どの
複数回合の迭折	結果を使用するかを決定します。

## 10. 前処理

前処理とは、撮像の条件、画像の品質、対象物の性質等、画像データの特殊性を吸収し、画像処理しやすい画像データにするための処理の事です。 前処理をクリックします。



### 前処理フィルタの設定を行います。

前処理設定 [001 :	]									×
		*		(学)	。 (本)(本)(二)	ill CU kTHA	<b>₽</b> =11146	回画像とパタンで同じ設定		
₩小 1/4人	守旧 ノ1ット	Ascope	СНО	画 除 航 八 △ 1   2   3	建筑水水	に口切探	衣示切换 CH1>>	0元データ		
Scor.31.0%								ļl		
								<ul> <li>●処理結果を表示する</li> </ul>		
								鮮銳化	~	設定
								○処理和未足衣小する		*Ards
and the second								処理なし	~	設正
								● ○処理結果を表示する		
								処理なし	~	設定
	re ser								_	
								〇処理結果を表示する		
								処理なし	~	設定
								ļ		
								○処理結果を表示する		
								処理なし	~	設定
								↓ ↓		
								〇処理結果を表示する		
								処理なし	~	設定
								の理想来を扱いする	~	金山中
								1 100 E	-	6.X.A.E.
								○処理結果を表示する		
								処理なし	~	設定
								OK	++	ンセル

画像とパタンで同じ設定	画像とパタンで同じ前処理フィルタの設定を行う場合にはチェックを入れ ます。
処理結果を表示する	前処理設定した画像の表示を行います。
前処理フィルタ	ガンマ補正、ヒストグラム平滑化、ヒストグラム正規化、平滑化フィルタ、 メディアンフィルタ、MIN/MAXフィルタ、鮮鋭化、ガウシアンフィルタ、色 空間変換、チャネル抽出、色抽出、モルフォルジの12種類のフィルタを用意 しています。
設定	各種フィルタの詳細設定が表示されます。
ОК	前処理設定を保存します。
キャンセル	前処理設定をキャンセルします。

## 10.1 ガンマ補正

ガンマ補正計算に使用する係数を設定します。この値が1の時には入力値そのままの値を出力します。 1より小さい値にすると全体的に明るい画像に対して、また1より大きい値にすると全体的に暗い画像に 対して濃度差を強調する効果を得ることが出来ます。

ガンマ補正設定	X
ガンマ値(0.01~10.00)	1.00
OK	キャンセル

●ガンマ値による変換カーブの例



# 10.2 ヒストグラム平滑化

処理対象画像のヒストグラムを作成し、このヒストグラムが平坦化されるように濃度値を変換します。

#### ●処理結果例



### 10.3 ヒストグラム正規化

処理対象画像のヒストグラムを作成し、このヒストグラムが正規化されるように濃度値を変換します。

ヒストグラムを作成したら、下記の処理を行い最大濃度値と最小濃度値を決定します。

- ・ヒストグラムの最小濃度値側から最大濃度値側へ順に頻度値を調べていき、始めに最小ヒストグラム頻度 値を超えた濃度を最小濃度値とする。
- ・ヒストグラムの最大濃度値側から最小濃度値側へ順に頻度値を調べていき、始めに最小ヒストグラム頻度 値を超えた濃度を最大濃度値とする。
- そして、この最小~最大濃度値が変換後の画像のヒストグラムで正規化されるように変換を行います。

ヒストグラム正規化設定	X
入力画像の最小ヒストグラム頻度値(0~)	0
入力画像の最小濃度値(任意)	0
入力画像の最大濃度値(任意)	255
ОК	キャンセル

### ●処理結果例



## 10.4 平滑化フィルタ

平滑化フィルタ設定		×
ボーダーモード設定	端延長t	<u>-</u>
ボーダー濃度値	0	
フィルタの幅	3	+
フィルタの高さ	3	+
フィルタ回数	1	
ОК		キャンセル

周囲画素との平均を求めてノイズ除去を行います。単純平滑化と呼ばれる方法です。

ボーダーモード設定	「10.4.1 ボーダーモード設定について」を参照ください。
ボーダー濃度値	ボーダー濃度値を設定します。
フィルタの幅	平均化するフィルタの幅を指定します。奇数値のみ設定可能です。
フィルタの高さ	平均化するフィルタの高さを指定します。奇数値のみ設定可能です。
フィルタ回数	フィルタの回数を設定します。

### 10.4.1 ボーダーモード設定について

ボーダー拡張モードに関して

フィルタ処理を行うと、画像データの周囲 n 画素は結果が出力されません。(n の値はフィルタ、設定値に よって異なります)。これは、画像の外側にはデータが無いため、フィルタ処理が出来ないためです。

そこで、画像データを外側に広げて、周囲 n 画素部分もフィルタ処理結果を入れる処理が、ボーダー拡張 となります。

周囲 n 画素ですが、平滑化フィルタ、メディアンフィルタのみ、フィルタサイズが指定でき、それ以外は 3x3 のフィルタとなっています。3x3 の場合は、周囲 1 画素となります。

平滑化フィルタで、7x5 画素としてした場合、左右3 画素、上下2 画素の結果が出力されません。 (求め方、(7-1)/2=3)

●ボーダー拡張無し

ボーダー拡張を行いません。そのため、周囲n画素は結果が格納されません。

●0 埋めモード

境界部分の濃度値は全て0になります。

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	а	b	с	d	е	0	0	0
0	0	f	g	h	i.	j	0	0	0
0	0	k	I	m	n	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

●一定値モード

境界部分の濃度値は、パラメータ「ボーダー濃度値」で設定された値 v になります。

v	v	v	~	<	<	~	~	<	~
v	v	v	v	×	~	v	v	v	v
v	v	а	b	с	d	е	v	v	v
v	v	f	g	h	i.	j	v	v	v
v	v	k	I	m	n	0	v	v	v
v	v	v	v	v	v	v	v	v	v
v	v	v	v	v	v	v	v	v	v

●端延長モード

境界部分の濃度値は、入力画像の周囲1画素の濃度値を延長したものになります。

а	а	а	b	с	d	е	е	е	е
а	а	а	b	с	d	е	е	е	е
а	а	а	b	с	d	е	е	е	е
f	f	f	g	h	i.	j	j	j	j
k	k	k	1	m	n	0	0	0	0
k	k	k	Ι	m	n	0	0	0	0
k	k	k	Ι	m	n	0	0	0	0

●繰り返しモード

入力画像がタイル状に連続していると考えて、出力画像の縁の部分の濃度値を決定します。

а	b	с	d	е	а	b	с	d	е	а	b	с	d	е
f	g	h	i	j	f	g	h	i	j	f	g	h	i	j
k		m	n	0	k	Ι	m	n	0	k	Ι	m	n	0
а	b	с	d	е	а	b	с	d	е	а	b	С	d	е
f	g	h	i	j.	f	g	h	i	j	f	g	h	i	j
k	1	m	n	0	k	- I	m	n	0	k	1	m	n	0
а	b	С	d	е	а	b	с	d	е	а	b	с	d	е
f	g	h	i	j	f	g	h	i.	j	f	g	h	i	j
k		m	n	0	k		m	n	0	k		m	n	0

●反転モード1

入力画像の画素の外側(左、上、で言えば、それぞれ-0.5の下図赤鎖線の部分)で入力画像を折り返して、 出力画像の境界部分の濃度値とします。

0	n	m	I	k	k	1	m	n	o	0	n	m	I	k
j	i	h	g	f	f	g	h	i.	j	j	i	h	g	f
е	d	С	b	а	а	b	с	d	е	е	d	с	b	а
е	d	С	b	а	а	b	с	d	е	е	d	С	b	а
j	i	h	g	f	f	g	h	i.	j	j	i.	h	g	f
0	n	m	Т	k	k	- I	m	n	0	0	n	m		k
0	n	m	Ι	k	k	Т	m	n	0	0	n	m		k
j	i	h	g	f	f	g	h	i	j	j	i	h	g	f
е	d	С	b	а	а	b	С	d	е	е	d	С	b	а

#### ●反転モード2

入力画像の画素の周囲1画素の中心(左、上、で言えば、それぞれ-0.0の下図赤鎖線の部分)で入力画像 を折り返して、出力画像の境界部分の濃度値とします。

0	n	m	Ι	k	1	m	n	0	n	m	-	k
j	i	h	g	ŧ	g	h	i	j	i	h	g	f
-e -	٠d٠	-c-	-b -	a	-b-	-c -	· d·	-e-	-d -	··e·	- b-	<del>-a</del> -
j	i.	h	g	f	g	h	i	j	i.	h	g	f
0	n	m	1	k	1	m	n	0	n	m	1	k
j	i	h	g	- f	g	h	i	j	i	h	g	f
е	d	с	b	a	b	с	d	е	d	с	b	а
				1								

# 10.5 メディアンフィルタ

注目画素を中心とする 3x3 の領域(注目画素+8 近傍)内にある 9 つの値の中央値で、注目画素を置き換える フィルタです。



メディアンフィルタ設定	<b>×</b>
ボーダーモード設定	「端延長モード・・・
フィルタの幅	3 +
フィルタの高さ	3 +
フィルタ回数	1
ОК	キャンセル

ボーダーモード設定	「10.4.1 ボーダーモード設定について」を参照ください。
フィルタの幅	フィルタの幅を指定します。奇数値のみ設定可能です。
フィルタの高さ	フィルタの高さを指定します。奇数値のみ設定可能です。
フィルタ回数	フィルタの回数を設定します。

## 10.6 MIN/MAX フィルタ

注目画素を中心とする3x3の領域(注目画素+8近傍)内で、最も濃度値の低い濃度、または、最も濃度値の 高い濃度値に置き換えます。



ボーダーモード設定	「10.4.1 ボーダーモード設定について」を参照ください。
ボーダー濃度値	ボーダー濃度値を設定します。
Min/Max設定	最小値または最大値を選択します。
フィルタ回数	フィルタの回数を設定します。

# 10.7 鮮鋭化

このフィルタは濃度値の変化を強調(微分)することによって画像を鮮明にします。

鮮鋭化フィルタ設定	<b>×</b>
ボーダーモード設定	端延長モード・
ボーダー濃度値	0
フィルタ回数	1
ОК	キャンセル

ボーダーモード設定	「10.4.1 ボーダーモード設定について」を参照ください。
ボーダー濃度値	ボーダー濃度値を設定します。
フィルタ回数	フィルタの回数を設定します。

## 10.8 ガウシアンフィルタ

画像データに2次元のガウス微分フィルタを施します。



ボーダーモード設定	「10.4.1 ボーダーモード設定について」を参照ください。
ボーダー濃度値	ボーダー濃度値を設定します。
X 方向微分次数	0,1,2の値を指定します。それぞれ、微分なし、1次微分、2次微分となります。 0を指定した場合、ボケた画像
Y 方向微分次数	1を指定した場合、エッジ部分が抽出 2を指定した場合、エッジの変化部分が抽出 されます。
シグマ値	ガウス関数のシグマ値を設定します。
フィルタ回数	フィルタの回数を設定します。

## 10.9 色空間変換

カラー画像の色空間を変換します。通常はカラー画像で使用します。RGB 色空間⇔各種色空間に変換が行 えます。

色空間変換設定		X
変換先の色空間	GRAY	•
	GRAY XYZ	
ОК	HSV(Smithの六角錐モデル)	
	HSV_JOBLOVE(Joblove/JOXX) (周報)	
Constant Post	□ L*a*b* 均等色空間 □ L*a*b* (FAST仕様)	
L 196 10 10 10 10	111213	

設定値	変換先の色空間	
GRAY	濃淡画像	
XYZ	XYZ色空間	
YIQ	YIQ色空間	
YUV(TCrCb)	YUV色空間	
HSV(Smithの六角錐モデル)	HSV色空間(Smithの六角錐モデル)	
HSV_JOBLOVE(Jobloveらの双六角錐)	HSV色空間(Jobloveらの双六角錐モデル)	
HSV_FAST (FAST仕様)	HSV色空間(FAST仕様)	
L*a*b 均等色空間	L*a*b色空間	
L*a*b(FAST仕様)	L*a*b色空間(FAST仕様)	
111213	I1I2I3色空間	

RGB 色空間を基準色空間として使用します。



### ●XYZ

XYZ 表色系は他の CIE 表色系の基礎となります。

この表色系は、RGB 表色系では等色関数に負の値がある為、等色関数の値がすべて非負となるように導入 されました。



YIQ(NTSC)は北アメリカでのTVの信号の規格です。 Y 成分(輝度)については、CIE1931XYZに従います。



### •YUV(TCrCb)

YUV (PAL/SECAM) は、アジアやヨーロッパでの TV の信号の規格です。 Y 成分 (輝度) については CIE1931XYZ に従います。CIE1931XYZ 表色系とは、CIE(国際照明委員会)で 1931 年に採択した等色関数  $x(\lambda)$ 、  $y(\lambda)$ 、  $z(\lambda)$  に基づく三色表色系です。 (2°視野 XYZ 表色系ともいいます)



#### ●HSV(Smith の六角錐モデル)

HSV 表色系は、色相 (Hue)、彩度 (Saturation)、明度 (Value)の三属性からなる色空間です。 この表色系は、マンセル表色系が基になっており、いくつかのモデルが存在します。 ここでは Smith の六角錐モデルを示します。



### ●HSV_JOBLOVE(Joblove らの双六角錐)

双六角錐モデルは、HSV (Smith の六角錐モデル)をより精密にしたもので、デザイン分野で利用されるオストワルト表色系に近いモデルです。



●HSV_FAST (FAST 仕様)

この表色系は、色相(Hue)、彩度(Saturation)、輝度(Lightness/Luminance)の三属性からなる色空間です。 HSV 色空間とは、彩度と輝度の考え方が異なります。彩度は、純色から彩度が落ちることは、灰色になる という考えに基づいています。輝度は輝度0を黒、100を白として、その中間を純色としています。通常 HSV 色空間では、明度100を純色としています。



●L*a*b 均等色空間

L*a*b*表色系は、CIE が均等知覚色空間の標準化のために推奨した表色系です。

この表色系は、三刺激値 X, Y, Z で均等色空間を近似することを目的に設計され、 *L***a**b* の直交座標系で 定義されています。



RGB 色空間は、RGB の3値が互いに相関を持っているため、情報の重複があると考えらます。 この RGB を無相関な3値に変換しようというのが 111213 色空間です。



# 10.10 チャネル抽出

カラー画像の特定の色を抽出します。カラー画像で使用します。

チャネル抽出 設定ダイアログ	X
チャネル番号 (0, 1, 2)	0
ОК	キャンセル

	0	1	2
RGB 色空間	R	G	В
XYZ 色空間	Х	Y	Z
YIQ 色空間	Y	Ι	Q
YUV 色空間	Y	U	V
HSV 色空間	Н	S	V
L*a*b 色空間	L*	a*	b*
I1I2I3	I1	12	13




H(CHO)



S(CH1)





H(CHO)

HSV(Joblove)



V(CH2)



S(CH1)

V(CH2)



L*a*b*







a*(CH1)

a*(CH1)





b*(CH2)



L*a*b*(FAST仕樣)

L*(CH0)

L*(CH0)



b*(CH2)

## 10.11 色抽出

カラー画像の特定の範囲の色を抽出します。カラー画像で使用します。



出力形式	出力形式について"入力画像と同じ型"か"二値画像(マスク)"を選択します。 また、抽出した領域以外は0クリアする場合には"抽出した領域以外は0クリアする" にチェックを入れます。
許容範囲	分散値を使用する場合にはチェックを入れ、分散値を設定します。
色票作成領域	設定した領域の始点 X,Y座標、終点 X,Y座標が表示されます。
色票データ	色抽出結果が表示されます。

# 10.12 モルフォルジ(3×3)

モルフォルジ <b>(</b> 3x3 <b>)</b>	<b>—</b> ———————————————————————————————————
手法	Erosion 🔹
モード	8近傍 🔹
フィルタ回数	1
ОК	キャンセル

手法	<ul> <li>アンカー(:注目画素)の濃度値を構造要素にしたがって決定していくものです。</li> <li>・Dilation:各点の濃度値を指定構造要素内の最大値と置き換えます。結果として白が膨張され、黒が収縮されます。</li> <li>・Erosion:各点の濃度値を指定構造要素内の最小値と置き換えます。結果として白が収縮され、黒が膨張されます。</li> <li>・Opening:Erosionを行った後、Dilationを行います。その結果、白い穴を埋めます。</li> <li>・Closing:Dilationを行った後、Erosionを行います。その結果、黒い穴を埋めます。</li> </ul>
モード	4近傍または8近傍の設定を行います。
フィルタ回数	フィルタの回数を設定します。

## 11. パタンマスク

パタンマスクとは、登録パタンにおいてマークやその背景に不規則な画像情報が障害になるような場合、 その情報を使用しないように処理する機能です。

また不可欠部分とは、サーチ実行時に必ず含んでいて欲しい特徴部分の事です。

ここで設定された部分の特徴のスコアがしきい値以上でない場合は回答として出力されません。

#### 11.1 手動マスク

パタンマスクをクリックします。

サーチパラメータ設定 [001:]						×
- ♀ ♀ ♀ ♀ ₩ 縮小 拡大 等倍 フィット AScope	☞ ●  画像読込 連続取	■ <del>日</del> 入 CH切換 サーチョ	■ 尾行 表示切換	表示画像	元画像表示	· · ·
<< CH 3 8/894/ 52/094	сно 🖳		CH 1 >>	前処	理	パタンマスク
				サーチ個数		1
				回転(度)	中心角ೂ 振れ幅	
and the state of the				スケール(%	)	00 - 100
				スコア閾値	Low	50 High 50
The state of				高精度ポー	「PJWET± ズ推定スコア最	 閾値 60
				エッジ抽出語	設定 相関エッドブ	
				画像用!	なン用	51105
				フィルタサイ	ズ W	13 H 5
				相関エッジ	強度閾値 _{応認定} 度関値	160
				9-70015	/ノ13)文  3  10  10	120
				ロエッジ表対	示 通常	۴ ×
				FPMツ	-JL	詳細設定
				サーチ範囲	副設定	複数回答の選択
			オプション	Ok		キャンセル

マスク、不可欠設定を行います。



トラックボールを左クリックした状態でマスク、不可欠に設定したい箇所を塗りつぶします。							
マスクは赤色、不可欠は緑色に表示されます。							
パタン番号	パタン番号が表示されます。						
	非表示 □□マスク、不可欠部分の表示を行いません。						
表示	マスク :設定したマスク部分を赤色で表示します。						
	不可欠部分∶設定した不可欠部分を緑色で表示します。						
エッジ表示	エッジを緑色で表示します。(サーチがFPMの場合のみ表示されます。)						
描く	マスクを描く場合選択します。						
消す	マスクを消す場合選択します。						
ペン	円、矩形、楕円を手動で設定して、その内側、外側をマスクすることが出来ます。						
ペンサイブ	マスク、不可欠部分を設定する際のペンサイズを設定します。						
ハンリイス	1(細い)~41(太い)						
内側	設定された形状の内側をマスクします。						
外側	設定された形状の外側をマスクします。						
実行	設定された内容でマスクの描画、消去を行います。						
マスク全消去	設定したマスク部分をクリアします。						
不可欠領域							
全消去	設定した不可久限域部分をグリアします。						
OK	マスク設定を保存します。						
キャンセル	マスク設定をキャンセルします。						

#### 11.2 自動1マスク

マスク設定ダイアログで、「自動1」タブを選択してください。 サーチ手法が「FPM」の場合のみ、「自動1」のタブが表示されます。

パタン画像の中から、「円(中実、中空)」「矩形(中実、中空)」「十字(中実、中空)」を探し出し、不必要な部分をマスクします。

「自動」を指定するとこれらのマークを自動で探し、マスクします。



・しきい値 :図形判別のためのスコアしきい値を設定します。
 ・隙間(画素):エッジを残す幅(片幅)を設定します。



### 12. サーチ実行、統計量計測

登録したパタンにてサーチテストを実行します。 サーチ実行をクリックすると登録したパタンを検出し、結果表示をします。

また統計量計測では、設定した回数分繰り返しサーチを実行し、サーチのばらつきを確認する事が出来ます。統計量計測をクリックします。

パタン表示 [013:	]								X
· ♀ ♀ 縮小 拡大	💦 🕺 等倍 フィット	AScope	画像保存	☞ 画像読込	<b>₽</b> 連続取込	I■ CH切換	田 サーチ実行	(13 : CHO : •••M	
Scale 32 PC							0.12.11		
								元画像表示	~
			1 02,970.47)					パタン新規登録	サーチ手法変更
			score:97					0	
								手動中心設定	自動中心設定
	オブ	່ນອັ					×		
		サーチテスト結果表示						サーチパラメータ設定	統計量計測
		サーチ結果 表示位置	せいしん せいしん	<u>置</u>		~			
			左上					Ø	
				OK		キャンセル	,	パタン肖耶余	
1個目つか ^{りま}	Lt- 74 60(mc)						オポロン	閉	53
118 262 M/24	0/2/1-1.00(113)						27747		

・オプション サーチテスト結果表示

サーチ個数が複数の場合、サーチ結果表示の位置を変更し、表示の重なりを防ぐ事が出来ます。

- サーチ位置・・・結果表示を画像の隣に表示します。
- 左上 ・・・結果表示を画面左上に表示します。
- 情報 OFF ・・・結果表示を行いません。

統計量計算をクリックすると設定回数分繰り返しサーチを実行し、画面右側にその結果が表示されます。

対象画像は、カメラ画像またはファイル画像から指定します。

(カメラ画像)

サーチテスト													×
♀ 縮小 拡大	ふ 🕺 等倍 フィット	AScope		☞ 画像読込	-⊈ 連続取込	III CH切换	FPM				パタン君	号	13
<< CH 3			сно 🖳	122		CH 1 >>	カメラ画像	ファイルi	画像				
							No.	時間	個数	Х	Y	回転角	スケーノ^
							36	59.44	1	1461.00	970.24	0.15	100.0
							37	60.10	1	1460.94	970.40	1.03	100.0
							38	58.25	1	1460.88	970.60	2.24	100.0
					******	~~~~~~	39	60.03	1	1460.89	970.48	1.32	100.0
							40	59.31	1	1460.85	970.46	1.47	100.0
							41	59.56	1	1460.92	970.30	0.31	100.0
1							42	60.59	1	1460.96	970.41	1.36	100.0
							43	59.89	1	1460.94	970.26	0.37	100.0
							44	60.64	1	1460.86	970.59	2.42	100.0
							45	59.47	1	1460.91	970.36	0.60	100.0
							46	59.66	1	1460.93	970.34	0.94	100.0
				Constant of the local diversion of the local			47	59.05	1	1460.89	970.45	1.37	100.0
							48	58.96	1	1460.91	970.34	0.47	100.0
			450 94,970.32) 1 3 ° 100 00%				49	60.39	1	1461.00	970.19	-0.40	100.0
			score:99				50	59.27	1	1460.94	970.32	0.32	100.0
							平均	59.71	1.00	1460	970.365	0.744	100.00
							最小	58.04	1.00	1460	970.131	-0.702	100.00
							最高	61.59	1.00	1461	970.658	2.418	100.00
							分散	0.57	0.00	0.002	0.016	0.556	0.00
							3σ	2.26	0.00	0.142	0.380	2.237	0.00
							<						>
							50個 見つだ	かりました					
													50/50
							(2)	计量计符		ריד	们保存		
							初日	51里訂昇		5	50 回数		閉じる

(ファイル画像)

・フォルダ選択、ファイル選択でサーチする画像を選択します。選択された画像が一覧に表示されます。
 ・削除ボタンで、一覧に表示されたファイルを削除することが出来ます。

サーチテス	F															×	
<u>へ</u> 縮小	♪ 拡大	 等倍	<mark>い</mark> フィット	AScope			<b>☞</b> 画像読込	<b>号</b> 連続取込	≣ CH切换	FPM				パタンド	番号	13	
<< Scale	сн з : <b>25.3%</b>				CH D		19		CH 1 >>	カメラ画	像 ファイルi	画像					
										フォリ	ルダ選択	771	ル選択		肖	ᆙ涂	
										No.	ファイル	時間	個数	Х	Y	回転角	
										1	20211	59.55	1	1460.94	970.32	0.32	
										2	20211	59.83	1	1460.94	970.32	0.32	
										3	20211	60.53	1	1460.94	970.32	0.32	
										4	20211	60.21	1	1460.94	970.32	0.32	
										5	20211	60.43	1	1460.94	970.32	0.32	
										6	20211	60.12	1	1460.94	970.32	0.32	
										7	20211	60.60	1	1460.94	970.32	0.32	
										8	20211	60.38	1	1460.94	970.32	0.32	
										9	20211	61.08	1	1460.94	970.32	0.32	
					(1481 94 970					平均		60.30	1.00	1460	970.323	0.324	
					0.32°, 100.0					最小		59.55	1.00	1460	970.323	0.324	
					scon	e:99				最高		61.08	1.00	1460	970.323	0.324	
						- Al				分散		0.18	0.00	0.000	0.000	0.000	
										3σ		1.27	0.00	0.000	0.000	0.000	
-																	
										<						>	
										9個 見つ	かりました						
																9/9	
									ファイル保				11保存				
											枕部 重計昇		5	50 回数		閉じる	

画像読込	ファイル画像の読込を行います。
連続取込	カメラの画像を連続して取り込みます。
CH切換	チャンネル切換を行います。
統計量計算	設定した回数(1~500回)繰り返しサーチを実行します。 X画素、Y画素、回転角、スケール、スコア、処理時間の平均、最小、最高、分散、 3σを見ることができます。
ファイル保存	統計量計算の結果をCSVファイルで D:¥User¥FV-alignerII¥DataFiles¥Log に保存し ます。
閉じる	サーチテスト画面を閉じます。

## 13. パタン削除

登録したパタンを削除する場合には、パタン削除をクリックします。 パタン削除確認パッドが表示されますので "Yes" をクリックするとパタンが削除されます。



#### 14. サポートが必要な場合

本製品について疑問や問題が生じた場合、ファースト製品サポートデスクでは技術的なお問い合わせに 関して、e-mailにて対応させていただいております。

なお、お問い合わせの際は、

- 本装置の型番(装置前面に装置銘板、及び補助シールが貼られています)
- 本装置のシリアル番号(装置の背面に貼られています)

を必ずお知らせください。これらはサポート上、製品の構成や世代などを知るうえで大変重要な情報と なります。

専門のエンジニアが折り返し、お答えいたします。 ご協力をお願いいたします。

#### ファースト製品サポートデスク

e-mail: fast-support@teldevice.co.jp

修理的	<b>太頼フォーム</b>	必要事項をご記入の上、 e-mailにてお送りください。					
	<u>年月日</u>	e-mail:fast-support@teldevice.co.jp 東京エレクトロン デバイス株式会社 ファースト製品サポートデスク					
※内容を研	霍認した上で、送付先等ご連絡いたします 	0					
会社名: 担当者名:							
部署名:							
住所∷	<u> </u>						
電話番号	:	FAX番号:					
e-mail∶							
製品名:		シリアルNo:					
	(不具合内容、操作手順、エラーメッ1	zージなどを出来る限り詳しくご記入下さい。)					
状況							
または							
57215							
内容							
	以下、該ヨ9 る項日にチェックして   パローランプ・ 口占灯 - 口消/						
	ファン : 口回転する						
	他のシステムSSDで試したか?						
	□試した □試していない						
	口他のシステムSSDでは起動する	口他のシステムSSDでも起動しない					
再現性	□常に出る □時々(頻度	)					
弊社記入構	載:						

[注] 1. このページはコピーしてお使いください。

B-001507

FV-alignerII シリーズ

操作説明書 No.3 サーチ設定

2025年1月第13版

#### 発行所 東京エレクトロン デバイス株式会社

本 社 〒150-6234 東京都渋谷区桜丘町1番1号 渋谷サクラステージ SHIBUYA タワー TEL 03-6635-6000(代表)

ファースト製品サポートデスク e-mail:fast-support@teldevice.co.jp B-002678